Преобразования различных видов энергии в электрическую энергию. Преобразование электрической энергии в другие виды энергии

Энергия, от греческого слова energeia – деятельность или действие, - общая мера различных видов движения и взаимодействия.

Энергия – это количественная мера действия и взаимодействия всех видов материи.

Виды энергии: механическая, электрическая, тепловая, магнитная, атомная.

Кинетическая энергия – результат изменения состояния движения материальных тел.

Потенциальная энергия – результат изменения положения частей данной системы.

Механическая энергия - это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Электроэнергия энергия – одна из совершенных видов энергии.

Ее широкое применение обусловленно следующими факторами:

· Получение в больших количествах вблизи месторождения ресурсов и водных источнков;

· Возможность транспортировки на дальние расстояния с относительно небольшими потерями;

· Способность трансформации в другие виды энергии: механическую, химическую, тепловую, световую;

· Отсутствие загрязнения окружающей среды;

· Внедрением на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

В последнее время, в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерным географическим распределением, становится целесообразным вырабатывать электроэнергию используя ветроэнергетические установки, солнечные батареи, малые газогенераторы.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Преобразование первичной энергии во вторичную осуществляется на станциях:

· На тепловой электрической станции ТЭС – тепловая;

· Гидроэлектростанции ГЭС – механическая (энергия движения воды);

· Гидроаккумулирующая станция ГАЭС – механическая (энергия движения предварительно наполненной в искусственном водоеме воды);

· Атомная электростанция АЭС – атомная (энергия ядерного топлива);

· Приливной электростанции ПЭС – приливов.

В РБ более 95% энергии вырабатывается на ТЭС, которые по назначению делятся на два типа:

1. Конденсационные тепловые электростанции КЭС, преднозначены для выработки только электрической энергии;

2. Теплоэлектроцентрали ТЭЦ, на которых осуществляется комбинированное производство электрической и тепловой энергии.

Способы получения и преобразования энергии.

Механическая энергия преобразуется в тепловую – трением, в химическую – путем разрушения структуры вещества, сжатия, в электрическую – путем изменения электромагнитного поля генератора.

Тепловая энергия преобразуется в химическую, в кинетическую энергию движения, а эта – в механическую (турбина), в электрическую (термо э.д.с.)



Химическая энергия может быть преобразована в механическую (взрыв), в тепловую (тепло реакции), в электрическую (батарейки).

Электрическая энергия может быть преобразована в механическую (электромотор), в химическую (электролиз), в электромагнитную (электромагнит).

Электромагнитная энергия – энергия Солнца – в тепловую (нагрев воды), в электрическую (фотоэффект → гелиоэнергетика), в механическую (звонок телефона).

Ядерная энергия → в химическую, тепловую, механическую (взрыв), регулируемое деление (реактор) → химическая + тепловая.

ТЭС включает комплект оборудования, в котором внутренняя химическая энергия топлива превращается в тепловую энергию воды и пара, преобразующуюся в ме-ханическую энергию вращения, которая и вырабатывает электрическую энергию.

Поступающие со склада (С) в парогенератор(ПГ) топливо при сжигании выделяет тепловую энергию, которая нагревая подведенную с водозабора(ВЗ)воду, преобразует ее в энергию водяного пара с температурой 550. В турбине энергия водяного пара превращается в механическую энергию вращения, передающуюся на генератор(Г), который превращает ее в электрическую. В конденсаторе пара(К) отработанный пар с температурой 123-125отдает скрытую теплоту парообразования охлаждающей его воде и с помощью циркулярного насоса(Н) в виде конденсатора вновь подается в котел-паронагнетатель.

Схема ТЭЦ отличается от ТЭС тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду подаваемую в главные тепловые магистрали.

АЭС

Схема АЭС зависят от типа реактора; вида теплоносителя; состава оборудования и могут быть одно-, двух-, и трехконтурными.

Одноконтурный АЭС.

Пар отрабатывается непосредственно в реакторе и поступает в паровую турбину. Отработанный пар конденсируются в конденсаторе, и конденсат подается насосом в реактор. Схема проста, экономична. Однако пар на выходе из реактора становится радиоактивным, что предъявляет повышенные требования к биологической защите и затрудняет проведение контроля и ремонта оборудования.

1-атомный реактор;

2-турбина;

3-электрогенератор;

4-конденсатор водяных паров;

5-питательный насос.

Отличие ТЭС от АЭС состоит в том, что источником теплоты на ТЭС является паровой котел, в котором сжигается органическое топливо; на АЭС – ядерный реактор, теплота в котором выделяется делением ядерного топлива, обладающей высокой теплотворной способностью.

Транспортирование тепловой и электрической энергии.

Транспортирование тепловой энергии.

Основными потребителями тепловой энергии являются промышленные предприятиями и жилищно-коммунальное хозяйство.

Системой теплоснабжения называется комплекс устройств по выроботке, транспортировке и использования теплоты.

Снабжение тепловой энергии потребителей(система отопления, вентиляция, горячего водоснабжения и технологических процессов) состоит из 3-х взаимосвязанных процессов: передачи теплоты теплоносителю, транспортировки теплоносителя и использования теплового потенциала теплоносителя. Системы теплоснабжения могут быть децентрализованными(местными) и централизованными.

Децентрализованные системы теплоснабжения – это системы, в которых 3 основных звена объединены и находятся в одном или смежных помещениях. При этом получение теплоты и передача ее воздуха помещения объединены в одном устройстве и расположены в отапливаемых помещениях.

Централизованные системы теплоснабжения – это системы, в которых от одного источника теплоты подается теплота для многих зданий, кварталов, районов.

Транспортирование тепловой энергии производится тепловыми сетями.

Основными элементами тепловых сетей являются трубопровод, изоляционная конструкция, несущая конструкция.

Прокладка трубопроводов производится надземными и подземными способами.

Транспортирование электрической энергии.

Передача электроэнергии от предприятий, вырабатывающих электроэнергию, непосредственным потребителям осуществляется с помощью электрических сетей, представляющих собой совокупность подстанций(повысительных и понизительных), распределительных устройств и соединяющих их электрических линий(воздушных или кабельных), размещенных на территории района, населенного пункта, потребителя электрической энергии.

К основному оборудованию, производящему и распределяющему электроэнергию, относится:

· Синхронные генераторы, вырабатывающие электроэнергию(на ТЭС - турбогенераторы);

· Сборные шины, принимающие электроэнергию от генераторов и распределяющие ее потребителям;

· Коммутационные аппараты-выключатели, включающие и отключающие цепи в нормальных и аварийных условиях, и разъединители, снимающие напряжения с обеспеченных частей электроустановок и создающие видимый разрыв цепи;

· Электроприемники собственных нужд(насосы, вентиляторы, аварийное электрическое освещение и т.д.).

Вспомогательное оборудование предназначено для выполнения функций измерения, сигнализации, защиты и автоматики и т.д.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

На тему: Способы преобразований различных видов энергий в энергетике

Студент: Мырза А.

Преподаватель: Джумартбаева Н.

Кентау-2015

Введение

1. Способы преобразование различных видов энергий

1.1 Виды преобразования электрической энергии

1.2 Воздействие различных источников энергии на окружающую среду

2. Способы получение электрический энергий

2.1 Электростанции

Заключение

Список использованной литературы

Введение

Энергия, от греческого слова energeia - деятельность или действие, - общая мера различных видов движения и взаимодействия. В естествознании различают следующие виды энергии: механическую, тепловую, электрическую, химическую, магнитную, электромагнитную, ядерную, гравитационную. Современная наука не исключает существование и других видов энергии. Энергия измеряется в Джоулях (Дж). Для измерения тепловой энергии используют калории, 1 кал=4.18 Дж, электрическую энергию измеряют в кВт*час=3.6*106Дж, механическая энергия измеряется в кг*м, 1кг*м=9.8 Дж. Кинетическая энергия - результат изменения состояния движения материальных тел. Потенциальная энергия - результат изменения положения частей данной системы. Механическая энергия - это энергия, связанная с движением объекта или его положением, способность совершать механическую работу. ток переменный напряжение

Электроэнергия энергия - одна из совершенных видов энергии. Ее широкое применение обусловлено следующими факторами: Получение в больших количествах вблизи месторождения ресурсов и водных источников;·Возможность транспортировки на дальние расстояния с относительно небольшими потерями; Способность трансформации в другие виды энергии: механическую, химическую, тепловую, световую; Отсутствие загрязнения окружающей среды; Внедрением на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

В последнее время, в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерным географическим распределением, становится целесообразным вырабатывать электроэнергию, используя ветроэнергетические установки, солнечные батареи, малые газогенераторы. Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива. Способы преобразования энергии: Человечество стремилось с начала своей истории овладеть энергией в своих интересах. Этапы "овладения" энергией: огонь, мускульная сила животных, сила ветра, воды, энергия пара электроэнергия ядерная энергия. Во Вселенной происходят процессы преобразования энергии из одного вида в другой в огромных масштабах. Человечество находится в самом начале пути понимания этих процессов. Закон сохранения энергии - энергия не создается и не уничтожается, она переходит из одного вида в другой. Различают энергию упорядоченного движения (свободную - механическую, химическую, электрическую, электромагнитную, ядерную) и энергию хаотического движения - теплоту. В настоящее время нет способов непосредственного превращения ядерной энергии в электрическую и механическую, нужно вначале пройти стадию превращения энергии в тепловую, а затем в механическую и электрическую. Преобразование первичной энергии во вторичную осуществляется на станциях:

· На тепловой электрической станции ТЭС - тепловая;

· Гидроэлектростанции ГЭС - механическая (энергия движения воды);

· Гидроаккумулирующая станция ГАЭС - механическая (энергия движения предварительно наполненной в искусственном водоеме воды);

· Атомная электростанция АЭС - атомная (энергия ядерного топлива);

· Приливной электростанции ПЭС - приливов. В РБ более 95% энергии вырабатывается на ТЭС, которые по назначению делятся на два типа:

1. Конденсационные тепловые электростанции КЭС, предназначены для выработки только электрической энергии;

2. Теплоэлектроцентрали ТЭЦ, на которых осуществляется комбинированное производство электрической и тепловой энергии. Способы получения и преобразования энергии. Механическая энергия преобразуется в тепловую - трением, в химическую - путем разрушения структуры вещества, сжатия, в электрическую - путем изменения электромагнитного поля генератора. Тепловая энергия преобразуется в химическую, в кинетическую энергию движения, а эта - в механическую (турбина), в электрическую (термо э.д.с.) Химическая энергия может быть преобразована в механическую (взрыв), в тепловую (тепло реакции), в электрическую (батарейки).

1 . Способы преобразование различных видов энергий

1.1 Виды преобразования электрической энергии

Вопросами, связанными с преобразованием электрической энергии из одного ее вида в другой, занимается область науки и техники, получившая название преобразовательной техники (или энергетической электроники). К числу основных видов преобразования электрической энергии относятся:

1. Выпрямление переменного тока - преобразование переменного тока (обычно промышленной частоты) в постоянный ток. Этот вид преобразования получил наибольшее развитие, так как часть потребителей электрической энергии может работать только на постоянном токе (электрохимические и электрометаллургические установки, линии передачи постоянного тока, электролизные ванны, заряжаемые аккумуляторные батареи, радиотехническая аппаратура и т.д.), другие же потребители имеют на постоянном токе лучшие характеристики, чем на переменном токе (регулируемые электродвигатели).

2. Инвертирование тока - преобразование постоянного тока в переменный. Инвертор применяется в тех случаях, когда источник энергии генерирует постоянный ток (электромашинные генераторы постоянного тока, аккумуляторные батареи и другие химические источники тока, солнечные батареи, магнитогидродинамические генераторы и т.д.), а для потребителей нужна энергия переменного тока. В ряде случаев инвертирование тока необходимо при других видах преобразования электрической энергии (преобразование частоты, преобразование числа фаз).

3. Преобразование частоты - преобразование переменного тока одной частоты (обычно 50 Гц) в переменный ток другой частоты. Такое преобразование необходимо для питания регулируемых электроприводов переменного тока, установок индукционного нагрева и плавки металлов, ультразвуковых устройств и т. д.

4. Преобразование числа фаз. В ряде случаев встречается необходимость в преобразовании трехфазного тока в однофазный (например, для питания дуговых электропечей) или, наоборот, однофазного в трехфазный. Так, на электрифицированном транспорте используется контактная сеть однофазного переменного тока, а на электровозах используются вспомогательные машины трехфазного тока. В промышленности используются трехфазно-однофазные преобразователи частоты с непосредственной связью, в которых наряду с преобразованием промышленной частоты в более низкую происходит и преобразование трехфазного напряжения в однофазное.

3. Преобразование постоянного тока одного напряжения в постоянный ток другого напряжения (преобразование постоянного напряжения). Подобное преобразование необходимо, например, на ряде подвижных объектов, где источником электроэнергии является аккумуляторная батарея или другой источник постоянного тока низкого напряжения, а для питания потребителей требуется более высокое постоянное напряжение (например, источники питания радиотехнической или электронной аппаратуры).

Существуют и некоторые другие виды преобразования электрической энергии (например, формирование определенной кривой переменного напряжения), в частности, формирование мощных импульсов тока, которые находят применение в специальных установках, регулируемое преобразование переменного напряжения. Все виды преобразований осуществляют с использованием силовых ключевых элементов. Основные типы полупроводниковых ключей - диоды, силовые биполярные транзисторы, тиристоры, запираемые тиристоры, транзисторы с полевым управлением.

Преобразователи на тиристорах принято делить на две группы: ведомые и автономные. В первых периодический переход тока с одного вентиля на другой (коммутация тока) осуществляется под действием переменного напряжения какого-либо внешнего источника. Если таким источником является сеть переменного тока, говорят о преобразователе, ведомом сетью. К таким преобразователям относятся: выпрямители, ведомые сетью (зависимые) инверторы, непосредственные преобразователи частоты, преобразователи числа фаз, преобразователи переменного напряжения. Если внешним источником напряжения, обеспечивающим коммутацию, является машина переменного тока (например, синхронный генератор или двигатель), преобразователь называют ведомым машиной.

Автономные преобразователи выполняют функции преобразования формы или регулирования напряжения (тока) путем изменения состояния управляемых силовых ключевых элементов под действием сигналов управления. К автономным преобразователям относятся импульсные регуляторы постоянного и переменного напряжения, некоторые виды инверторов напряжения.

Традиционно силовые вентильные преобразователи использовались для получения выпрямленного напряжения промышленных сетей частотой 50 Гц и для получения переменного напряжения (однофазного или трехфазного) при питании от источника постоянного напряжения. Для этих преобразователей (выпрямителей и инверторов) используют диоды и тиристоры, коммутируемые с частотой сети. Форма выходного напряжения и тока определяется линейной частью схемы и фазовой модуляцией угла регулирования.

Выпрямление и инвертирование продолжают оставаться ведущим способом преобразования электрической энергии, однако способы преобразования претерпели значительные изменения и их разновидности стали гораздо многочисленнее.

Появление новых типов силовых полупроводниковых вентилей, близких к идеальному управляемому ключевому элементу, существенно изменило подход к построению вентильных преобразователей. Получившие распространение в последние годы запираемые тиристоры (GTO - gate turn off thirystor) и биполярные транзисторы с изолированным затвором (БТИЗ - IGBT - insolated gate bipolar transistor) успешно перекрывают диапазон мощностей до сотен и тысяч киловатт, их динамические свойства непрерывно совершенствуются, а стоимость с ростом выпуска снижается. Поэтому они успешно вытеснили обычные тиристоры с узлами принудительной коммутации. Области применения импульсных преобразователей напряжения с новыми классами приборов также расширились. Быстро развиваются мощные импульсные регуляторы как для повышения, так и для понижения постоянного напряжения питания; импульсные преобразователи часто используются в системах утилизации энергии возобновляемых источников (ветер, солнечная радиация).

Большие вложения делаются в производство энергии с использованием энергосберегающих технологий, когда возобновляемые первичные источники используются либо для возврата энергии в сеть, либо для подзарядки накопителя (аккумулятора) в установках с повышенной надежностью энергоснабжения. Появляются новые классы преобразователей для электроприводов с вентильно-индукторными двигателями (SRD - switched reluctanse drive). Эти преобразователи представляют собой многоканальные (число каналов обычно от трех до восьми) коммутаторы, обеспечивающие поочередно подключение обмоток статора двигателя с регулируемыми частотой и напряжением. Импульсные преобразователи получают широкое распространение в источниках питания бытовой аппаратуры, зарядных устройствах, сварочных агрегатах и целом ряде новых применений (пускорегулирующие устройства осветительных установок, электрофильтры и пр.).

Помимо совершенствования элементной базы силовых преобразовательных цепей на стратегию решения схемотехнических задач оказало огромное влияние развитие микроконтроллерных устройств и цифровых методов обработки информации.

1.2 Воздействие различных источни ков энергии на окружающую среду

Сжигание топлива - не только основной источник энергии, но и важнейший поставщик в среду загрязняющих веществ. Тепловые электростанции в наибольшей степени "ответственны" за усиливающийся парниковый эффект и выпадение кислотных осадков. Они, вместе с транспортом, поставляют в атмосферу основную долю техногенного углерода (в основном в виде СО), около 50% двуокиси серы, 35% - окислов азота и около 35% пыли. Имеются данные, что тепловые электростанции в 2-4 раза сильнее загрязняют среду радиоактивными веществами, чем АЭС такой же мощности. В выбросах ТЭС содержится значительное количество металлов и их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюминия и его соединений свыше 100 млн. доз, железа-400 млн. доз, магния -1,5 млн. доз. Летальный эффект этих загрязнителей не проявляется только потому, что они попадают в организмы в незначительных количествах. Это, однако, не исключает их отрицательного влияния через воду, почвы и другие звенья экосистем. Можно считать, что тепловая энергетика оказывает отрицательное влияние практически на все элементы среды, а также на человека, другие организмы и их сообщества. Вместе с тем влияние энергетики на среду и ее обитателей в большей мере зависит от вида используемых энергоносителей (топлива). Наиболее чистым топливом является природный газ, далее следует нефть (мазут), каменные угли, бурые угли, сланцы, торф. Хотя в настоящее время значительная доля электроэнергии производится за счет относительно чистых видов топлива (газ, нефть), однако закономерной является тенденция уменьшения их доли. По имеющимся прогнозам, эти энергоносители потеряют свое ведущее значение уже в первой четверти XXI столетия. Здесь уместно вспомнить высказывание Д.И. Менделеева о недопустимости использования нефти как топлива: "нефть не топливо - топить можно и ассигнациями". Не исключена вероятность существенного увеличения в мировом энергобалансе использования угля. По имеющимся расчетам, запасы углей таковы, что они могут обеспечивать мировые потребности в энергии в течение 200-300 лет Возможная добыча углей, с учетом разведанных и прогнозных запасов, оценивается более чем в 7 триллионов тонн. При этом более 1/3 мировых запасов углей находится на территории России. Поэтому закономерно ожидать увеличения доли углей или продуктов их переработки (например, газа) в получении энергии, а, следовательно, и в загрязнении среды. Угли содержат от 0,2 до десятков процентов серы в основном в виде пирита, сульфата закисного железа и гипса. Имеющиеся способы улавливания серы при сжигании топлива далеко не всегда используются из-за сложности и дороговизны. Поэтому значительное количество ее поступает и, по-видимому, будет поступать в ближайшей перспективе в окружающую среду. Серьезные экологические проблемы связаны с твердыми отходами ТЭС - золой и шлаками. Хотя зола в основной массе улавливается различными фильтрами, все же в атмосферу в виде выбросов ТЭС ежегодно поступает около 250 млн. т. мелкодисперсных аэрозолей.

Последние способны заметно изменять баланс солнечной радиации у земной поверхности. Они же являются ядрами конденсации для паров воды и формирования осадков, а попадая в органы дыхания человека и других организмов, вызывают различные респираторные заболевания. ТЭС - существенный источник подогретых вод, которые используются здесь как охлаждающий агент. Эти воды нередко попадают в реки и другие водоемы, обусловливая их тепловое загрязнение и сопутствующие ему цепные природные реакции (размножение водорослей, потерю кислорода, гибель гидробионтов, превращение типично водных экосистем в болотные и т. п.).

Ядерная энергетика до недавнего времени рассматривалась как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. Достаточно отметить, что 0,5 кг ядерного топлива позволяет получать, столько же энергии, сколько сжигание 1000 тонн каменного угля. До середины 80-х годов человечество в ядерной энергетике видело один из выходов из энергетического тупика. Только за 20 лет (с середины 60-х до середины 80-х годов) мировая доля энергетики, получаемой на АЭС, возросла практически с нулевых значений до 15-17%, а в ряде стран она стала превалирующей. Ни один другой вид энергетики не имел таких темпов роста. До недавнего времени основные экологические проблемы АЭС связывались с захоронением отработанного топлива, а также с ликвидацией самих АЭС после окончания допустимых сроков эксплуатации. Имеются данные, что стоимость таких ликвидационных работ составляет от 1/6 до 1/3 от стоимости самих АЭС. Некоторые параметры воздействия АЭС и ТЭС на среду представлены в таблице 8.3. При нормальной работе АЭС выбросы радиоактивных элементов в среду крайне незначительны. В среднем они в 2-4 раза меньше, чем от ТЭС одинаковой мощности. К маю 1986 г. 400 энергоблоков, работавших в мире и дававших более 17% электроэнергии, увеличили природный фон радиоактивности не более чем на 0,02%. До Чернобыльской катастрофы в нашей стране никакая отрасль производства не имела меньшего уровня производственного травматизма, чем АЭС. За 30 лет до трагедии при авариях, и то по нерадиационным причинам, погибло 17 человек. После 1986 г. главную экологическую опасность АЭС стали связывать с возможностью аварий. Хотя вероятность их на современных АЭС и невелика, но она и не исключается. К наиболее крупным авариям такого плана относится случившаяся на четвертом блоке Чернобыльская АЭС. Неизбежный результат работы АЭС - тепловое загрязнение вод. На единицу получаемой энергии здесь оно в 2-2,5 раза больше, чем на ТЭС, где значительно больше тепла отводится в атмосферу. Выработка 1 млн. кВт электроэнергии на ТЭС дает 1,5 км 3 подогретых вод, на АЭС такой же мощности объем подогретых вод достигает 3-3,5 км 3. Следствием больших потерь тепла на АЭС является более низкий коэффициент их полезного действия по сравнению с ТЭС. На последних он равен 35-40%, а на АЭС - только 30-31 %. В целом можно назвать следующие воздействия АЭС на среду: - разрушение экосистем и их элементов (почв, грунтов, водоносных структур и т. п.) в местах добычи руд (особенно при открытом способе); - изъятие земель под строительство самих АЭС. Особенно значительные территории отчуждаются под строительство сооружений для подачи, отвода и охлаждения подогретых вод. Для электростанции мощностью 1000 МВт требуется пруд-охладитель площадью около 800-900 га. Пруды могут заменяться гигантскими градирнями с диаметром у основания 100-120 м и высотой, равной 40-этажному зданию; - изъятие значительных объемов вод из различных источников и сброс подогретых вод. Если эти воды попадают в реки и другие источники, в них наблюдается потеря кислорода, увеличивается вероятность цветения, возрастают явления теплового стресса у гидробионтов; - не исключено радиоактивное загрязнение атмосферы, вод и почв в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях. Электромагнитные (ЭМ) поля токов промышленной частоты, наиболее опасные места - у трансформаторных подстанций, под линиями электропередач высокого напряжения. Интенсивность излучения пропорциональна четвертой степени частоты колебаний электромагнитного поля. Действие ЭМ поля вызывает нарушение функций нервной и сердечно-сосудистой систем, изменяет кровяное давление.

2. Способы получение электрический энергий

2.1 Электростанции

Электростанция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. Большинство электростанций, будь то гидроэлектростанции, тепловые (АЭС, ТЭС и прочие) или ветроэлектростанции, используют для своей работы энергию вращения вала генератора.

1. Атомная электростанция

2. Тепловая электростанция

3. Волновая электростанция

4. Геотермальная электростанция

5. Приливная электростанция

6. Гидроаккумилирующая электростанция

Атомная электростанция

Атомная электроста нция (АЭС) - ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом), предназначенная для производства электрической энергии. Во второй половине 40-х гг., ещё до окончания работ по созданию первой советской атомной бомбы (её испытание состоялось 29 августа 1949 года), советские учёные приступили к разработке первых проектов мирного использования атомной энергии, генеральным направлением которого сразу же стала электроэнергетика. В 1948 г. по предложению И.В. Курчатова и в соответствии с заданием партии и правительства начались первые работы по практическому применению энергии атома для получения электроэнергии. В мае 1950 года близ посёлка Обнинское Калужской области начались работы по строительству первой в мире АЭС.В 1950 году в США был создан реактор EBR-I недалеко от города Арко, штат Айдахо. Данный реактор 20 декабря 1951 года в ходе эксперимента выработал пригодное для использования электричество мощностью 800 Вт. После этого мощность реактора была повышена для обеспечения электроэнергией станции, на которой находился реактор. Это даёт право называть данную станцией первой экспериментальной АЭС, но при этом она не была подключена к энергетической сети.

Тепловая электростанция

Тепловая электростанция -- электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.

(ТЭС), энергетическая установка, на которой в результате сжигания органического топлива получают тепловую энергию, преобразуемую затем в электрическую. ТЭС основной тип электрических станций, доля вырабатываемой ими электроэнергии составляет в промышленно развитых странах 70-80 % (в России в 2000 г. ок. 67 %). Тепловая энергия на ТЭС используется для нагрева воды и получения пара (на паротурбинных электростанциях) или для получения горячих газов (на газотурбинных). Для получения тепла органическое топливо сжигают в котло-агрегатах ТЭС.

Волновая электростанция

Волновая электростанция - электростанция, расположенная в водной среде, целью которой является получение электроэнергии из кинетической энергии волн. Потенциал волн оценивается в более 2 млн МВт. Места с наибольшим потенциалом для волновой энергетики - западное побережье Европы, северное побережье Великобритании и Тихоокеанское побережье Северной, Южной Америки, Австралии и Новой Зеландии, а также побережье Южной Африки.

Первая волновая электростанция расположена в районе Агусадора, Португалия на расстоянии 5 километров от берега. Была официально открыта 23 сентября 2008 года португальским министром экономики. Мощность данной электростанции составляет 2,25 МВт, этого хватает для обеспечения электроэнергией примерно 1600 домов. Первоначально предполагалось, что станция войдёт в эксплуатацию в 2006 году, но развёртывание электростанции произошло на 2 года позже планируемого срока. Проект электростанции принадлежит шотландской компании Pelamis Wave Power, которая в 2005 году заключила контракт с португальской энергетической компанией Enersis на строительство волновой электростанции в Португалии. Стоимость контракта составила 8 миллионов евро.

Геотермальная электростанция

Геотермамльная электростамнция (ГеоЭС или ГеоТЭС) - вид электростанций, которые вырабатывают электрическую энергию из тепловой энергии подземных источников (например, гейзеров).

Геотермальная энергия - это энергия, получаемая из природного тепла Земли. Достичь этого тепла можно с помощью скважин. Геотермический градиент в скважине возрастает на 1 °C каждые 36 метров. Это тепло доставляется на поверхность в виде пара или горячей воды. Такое тепло может использоваться как непосредственно для обогрева домов и зданий, так и для производства электроэнергии. Термальные регионы имеются во многих частях мира. По различным подсчетам, температура в центре Земли составляет, минимум, 6 650 °C. Скорость остывания Земли примерно равна 300--350 °C в миллиард лет. Земля выделяет 42·1012 Вт тепла, из которых 2 % поглощается в коре и 98 % - в мантии и ядре. Современные технологии не позволяют достичь тепла, которое выделяется слишком глубоко, но и 840 000 000 000 Вт (2 %) доступной геотермальной энергии могут обеспечить нужды человечества на долгое время. Области вокруг краев континентальных плит являются наилучшим местом для строительства геотермальных станций, потому что кора в таких зонах намного тоньше.

Приливная электростанция

Приливная электростанция (ПЭС) - особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. Колебания уровня воды у берега могут достигать 18 метров.

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроаккумулирующая электростанция. Существует мнение, что работа приливных электростанций тормозит вращение Земли, что может привести к негативным экологическим последствиям. Однако ввиду колоссальной массы Земли кинетическая энергия ее вращения (~1029 Дж) настолько велика, что работа приливных станций суммарной мощностью 1000 ГВт будет увеличивать длительность суток лишь на ~10?14 секунды в год, что на 9 порядков меньше естественного приливного торможения(~2·10?5 с в год).

Гидроаккумилирующая электростанция

ГАЭС использует в своей работе либо комплекс генераторов и насосов, либо обратимые гидроэлектроагрегаты, которые способны работать как в режиме генераторов, так и в режиме насосов. Во время ночного провала энергопотребления ГАЭС получает из энергосети дешёвую электроэнергию и расходует её на перекачку воды в верхний бьеф (насосный режим). Во время утреннего и вечернего пиков энергопотребления ГАЭС сбрасывает воду из верхнего бьефа в нижний, вырабатывает при этом дорогую пиковую электроэнергию, которую отдаёт в энергосеть (генераторный режим).В крупных энергосистемах большую долю могут составлять мощности тепловых и атомных электростанций, которые не могут быстро снижать выработку электроэнергии при ночном снижении энергопотребления или же делают это с большими потерями. Этот факт приводит к установлению существенно большей коммерческой стоимости пиковой электроэнергии в энергосистеме, по сравнению со стоимостью электроэнергии, вырабатываемой в ночной период. В таких условиях использование ГАЭС экономически эффективно и повышает как эффективность использования других мощностей (в том числе и транспортных), так и надёжность энергоснабжения.

Заключение

Электрическая энергия вырабатывается на электрических станциях и передается потребителям главным образом в виде переменного трехфазного тока промышленной частоты 50 Гц. Однако как в промышленности, так и на транспорте имеются установки, для питания которых переменный ток частотой 50 Гц непригоден.

Вопросами, связанными с преобразованием электрической энергии из одного ее вида в другой, занимается область науки и техники, получившая название преобразовательной техники (или энергетической электроники).

Энергия, от греческого слова energeia - деятельность или действие, - общая мера различных видов движения и взаимодействия. В естествознании различают следующие виды энергии: механическую, тепловую, электрическую, химическую, магнитную, электромагнитную, ядерную, гравитационную. Современная наука не исключает существование и других видов энергии. Энергия измеряется в Джоулях (Дж).

Список использованной л итературы

1. Справочник технолога-машиностроителя. В 2-х т. Т.2/под ред. А.М. Дальского, А.Г. Косиловой, Р.К. Мещерякова, А.Г. Суслова. -5-е изд., перераб. и доп. - М.: Машиностроение-1, 2001. -912 с.: ил.

2. Анурьев В.И. Справочник конструктора-машиностроителя: В 3-х т. Т. 1. - 8-е изд., перераб. и доп. Под ред. И.Н. Жестковой. - М.: Машиностроение, 2001. -920 с.: ил.

3. Анурьев В.И. Справочник конструктора-машиностроителя: В 3-х т. Т. 2. - 8-е изд., перераб. и доп. Под ред. И.Н. Жестковой. - М.: Машиностроение, 2001. -920 с.: ил.

4. Дунаев П.Ф., Леликов О.П. Детали машин. Курсовое проектирование: Учеб. Пособие для машиностроит. спец. техникумов. - М.: Высш. Шк., 1984. -336 с.: ил.

Размещено на Allbest.ru

...

Подобные документы

    Расчёт параметров цепи постоянного тока методом уравнений Кирхгофа, контурных токов и методом узловых напряжений. Расчёт баланса мощностей. Расчёт параметров цепи переменного тока методом комплексных амплитуд. Преобразование соединения сопротивлений.

    курсовая работа , добавлен 14.04.2015

    Преобразование переменного тока в постоянный. Способы регулирования напряжения выпрямителей. Блочная схема тиристорного преобразователя серии "КЕМТОР". Определение параметров согласующего трансформатора. Расчет внешних характеристик преобразователя.

    курсовая работа , добавлен 12.03.2013

    Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.

    курсовая работа , добавлен 10.05.2013

    Особенности управления электродвигателями переменного тока. Описание преобразователя частоты с промежуточным звеном постоянного тока на основе автономного инвертора напряжения. Динамические характеристики САУ переменного тока, анализ устойчивости.

    курсовая работа , добавлен 14.12.2010

    Исследование неразветвленной и разветвленной электрических цепей постоянного тока. Расчет нелинейных цепей постоянного тока. Исследование работы линии электропередачи постоянного тока. Цепь переменного тока с последовательным соединением сопротивлений.

    методичка , добавлен 22.12.2009

    Анализ электрических цепей постоянного тока. Расчёт токов с помощью законов Кирхгофа. Расчёт токов методом контурных токов. Расчёт токов методом узлового напряжения. Исходная таблица расчётов токов. Потенциальная диаграмма для контура с двумя ЭДС.

    курсовая работа , добавлен 02.10.2008

    Источник питания как устройство, предназначенное для снабжения аппаратуры электрической энергией. Преобразование переменного напряжения промышленной частоты в пульсирующее постоянное напряжение с помощью выпрямителей. Стабилизаторы постоянного напряжения.

    реферат , добавлен 08.02.2013

    История высоковольтных линий электропередач. Принцип работы трансформатора - устройства для изменения величины напряжения. Основные методы преобразования больших мощностей из постоянного тока в переменный. Объединения элетрической сети переменного тока.

    отчет по практике , добавлен 19.11.2015

    Электронные устройства для преобразования энергии переменного тока в энергию постоянного тока. Классификация выпрямителей, их основные параметры. Работа однофазной мостовой схемы выпрямления. Диаграммы токов и напряжений двухполупериодного выпрямителя.

    реферат , добавлен 19.11.2011

    Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.

Мировое потребление энергии во всех ее видах, в том числе и электроэнергии, находится в непосредственной зависимости от численности населения. Население Зем­ли растет особенно значительно в последнее время и к 2000 г. составит, по существующим прогнозам, примерно 6 млрд. человек. Динамика роста населения во второй половине XX в. такова, что к 2000 г. население возрас­ло более чем в 2 раза по сравнению с 1950 г. (табл. 3.1). Большая доля в приросте населения приходится на раз­вивающиеся страны. Наряду с увеличением общего по­требления энергии в мире растет также доля энергии, приходящаяся на одного человека (табл. 3.1).

Огромные потребности в энергии ставят перед чело­вечеством проблему разработки новых способов ее получения. В настоящее время уже нельзя довольствоваться существующими, ставшими традиционными способами преобразования различных видов энергии в электриче­скую из-за ограниченности запасов органического топ­лива, которое расточительно используется при сжигании в топках. КПД современных ТЭС не превышает 40%. Это означает, что большая часть получаемой теплоты те­ряется и оказывает пагубное «тепловое загрязнение» на близрасположенные водоемы. Кроме того, при сжигании топлива плохо используется вещество, вовлеченное в процесс преобразования энергии. КПД по использова­нию вещества составляет у ТЭС ничтожно малую вели­чину.

Таблица 3.1

Следовательно, процесс сжигания топлива сопро­вождается огромными выбросами побочных продуктов, загрязняющих окружающую среду. Поэтому разработка новых способов преобразования энергии, позволяющих уменьшить выбросы отходов в атмосферу, относится к важнейшим социальным проблемам. Это, конечно, не означает, что современнее ТЭС, ГЭС и АЭС не соответ­ствуют духу времени и их строительство будет пре­кращено.

В обозримом будущем ТЭС останутся одними из ос­новных, поэтому совершенствование их конструкции, улучшение термодинамического цикла актуально для большой энергетики.

Большие надежды возлагаются на АЭС, внедрение которых происходит во многих странах мира с невиданными в истории техники темпами. Ожидается, что к 2000 г. суммарная мощность АЭС в мире составит 3500-3600 ГВт, в то время как общая энергетическая мощность достигнет 7000-7200 ГВт. Иными словами, предполагается, что не менее 50% всей располагаемой человечеством энергетической мощности будет приходится на АЭС. Приведенные цифры свидетельствуют о большом темпе развития, в особенности если учесть, что первая АЭС была построена в 1954 г.

По использованию вещества на АЭС КПД значительно выше, чем на ТЭС (см. табл. 2.1), но при условии что это вещество специально подготовлено для выполнения функций ядерного топлива. При этом на АЭС классический термодинамический цикл преобразования теплоты в механическую энергию, которая затем генераторами преобразуется в электрическую, приводит к большим потерям энергии, получаемой в реакторах. Таким образом, на современных АЭС не удается избежать основных принципиальных недостатков, свойственных ТЭС.

Заманчива перспектива науки - получить эффективные способы непосредственного преобразования ядерной энергии в электрическую. Предвидев то огромное значение, которое ядерная энергия призвана сыграть в истории человечества, Герберт Уэллс в начале XX в. писал; «...уже занималась заря мощи и свободы под небом озаренным надеждой, перед ликом науки, которая, подобно благодетельной богине, держала в сильных рукам над кромешным мраком человеческой жизни изобилие, мир, ответ на бесчисленные загадки, ключи к славнейшим деяниям, ожидая, пока люди соблаговолят их взять...».

Широко используемые во многих странах мира ГЭС сооружаемые на реках, и в дальнейшем будут развиваться как весьма современные преобразователи энергии в возобновляемой форме. В связи с возрастающим загрязнением биосферы и ограниченностью запасов топлива повышается интерес к «чистым» электростанциям, использующим энергию морских приливов, теплоту земных недр, энергию солнечной радиации.

Таким образом, вместе с развитием цивилизации и технического прогресса будут совершенствоваться существующие, ставшие классическими, и создаваться новые, более эффективные способы преобразования энергии. В отдаленной перспективе человечество будет распола­гать арсеналом качественно иных источников энергии, и то, чем оно пользуется сегодня, неизбежно отойдет в прошлое, как в настоящее время стали историческими паровые машины.

Несмотря на бурный прогресс в энергетике и высокие темпы наращивания энергетического потенциала плане­ты, производство энергии недостаточно. Все еще прихо­дится считаться с тем реальным фактом, что большая часть населения планеты голодает, страдает от нищеты и загрязнения окружающей среды.

Кроме того, потребление энергии в мире (различных странах) крайне неравномерно, а как показано выше, потребление энергии в стране определенным образом связано с культурным уровнем (см. с. 19) ее населения. Развитие цивилизации и производство материальных ценностей также непосредственно связаны с количест­вом потребляемой энергии и ее качеством.

Для улучшения условий жизни людей на планете, значительного повышения производительности труда, изменения ландшафтов в широких масштабах, а также решения ряда других жизненно важных проблем наря­ду с созданием необходимых социальных условий разви­тия важное значение имеет получение достаточно боль­ших количеств энергии.

Как справедливо пишут американские ученые Г. Сиборг и У. Корлисс, «...дешевая энергия - это значит пи­ща в достатке, обилие пресной воды, чистый воздух и все то, что принято называть признаками цивилизации».

Нехватка в современном мире продуктов сельского хозяйства ставит перед правительствами ряда стран про­блему повышения их производства. В некоторой мере увеличение продуктов питания можно получить за счет использования пригодных для земледелия пустующих земель. Однако эти возможности имеются не во всех нуждающихся в продовольствии странах и, кроме того, они ограничены. В условиях быстрого увеличения чис­ленности населения решение проблемы продуктов пита­ния возможно только путем интенсификации сельского хозяйства и в первую очередь орошения земли. Запасы пресной воды, пригодной для целей орошения, невелики. Издавна люди мечтали использовать для нужд сель­ского хозяйства морскую воду, омывающую берега. Опреснение морской воды в промышленных масштабах становится возможным в настоящее время, когда с помо­щью наиболее пригодных для этого АЭС стало доступ­ным получение в больших количествах теплоты, необхо­димой для дистилляции морской воды.

По существующим подсчетам 1/3 Земли из-за отсут­ствия влаги не заселена, в то время как 1/2 населения земного шара «теснится» на 1/10 суши. С помощью дешевых источников энергии можно было бы незаселен­ную территорию Земли превратить в процветающую, открывающую широкие горизонты для значительной час­ти населения планеты.

Огромные количества энергии потребуются человече­ству также для решения таких задач, как изменение климата на обширных пространствах путем изменения направления морских течений или сооружения водоемов с большой поверхностью испарения, преобразование ландшафта, строительство искусственных морских зали­вов и т. п.

Применяемые в современной энергетике способы получения электрической энергии сопровождаются боль­шими потерями и основаны на расточительном использо­вании органического топлива. В будущем, по мере воз­растания потребности в больших количествах дешевой энергии и более рационального использования природ­ного сырья для производства продуктов химической, фармацевтической промышленности и т. п., неизбежно на смену ставшим традиционными способам преобразо­вания энергии придут качественно новые способы, в первую очередь способы непосредственного преобразо­вания теплоты и химической энергии в электрическую.

Способы непосредственного преобразования различ­ных видов энергии в электрическую основываются на физических явлениях и эффектах, открытых в прошлом. Их практическое применение совершенствуется по мере прогресса в науке и технике, накопления богатого экспе­риментального материала и использования новейшей технологии. Однако способы непосредственного получе­ния электрической энергии пока не конкурентоспособны со способами преобразования энергии, применяемыми на современных электрических станциях. Непосредственное получение в больших количествах электроэнергии преоб­разованием теплоты, химической и ядерной энергии относится к новым, перспективным способам, которые не­сомненно станут основными и значительно увеличат доступные энергетические ресурсы планеты.

Непосредственное получение электрической энергии уже широко используется в автономных источниках энер­гии небольшой мощности, для которых показатели эко­номичности работы не имеют решающего значения, а важны надежность работы, компактность, удобство обслуживания, небольшая масса и т. д. Такие источники энергии применяются в системах сбора информации в труднодоступных местах Земли и в межпланетном про­странстве, на космических аппаратах, самолетах, судах и т. п. Суммарная установленная мощность миллиардов автономных источников электроэнергии, несмотря на их скромные размеры, превосходит мощность всех стацио­нарных электростанций, вместе взятых.

Работа автономных источников, непосредственно преобразующих различные виды энергии в электриче­скую, основана либо на химических, либо на физических эффектах. В химических источниках, например, таких, как гальванические элементы, аккумуляторы, электро­химические генераторы и т. п., используется энергия окислительно-восстановительных реакций химических реагентов. Физические источники электроэнергии, такие, как термоэлектронные генераторы, фотоэлектрические батареи, термоэмиссионные генераторы, работают в со­ответствии с различными физическими эффектами.

К одной из центральных физико-технических задач энергетики относится создание магнитогидродинамических генераторов (МГД-генераторов), непосредственно преобразующих тепловую энергию в электрическую. Возможности практической реализации такого рода пре­образования энергии в широких промышленных масшта­бах появляются в связи с успехами в атомной физике, физике плазмы, металлургии и ряде других областей.

Непосредственное преобразование тепловой энергии в электрическую позволяет существенно повысить эффек­тивность использования топливных ресурсов.

Для современной электроэнергетики большое значе­ние имеет открытый Фарадеем закон электромагнитной индукции, который утверждает, что в проводнике, движущемся в магнитном поле, индуцируется ЭДС. При этом проводник может быть твердым, жидким или газо - образным. Область науки, изучающая взаимодействие между магнитным полем и токопроводящими жидкостям ми или газами, называется магнитогидродинамикой.

Еще Кельвин показал, что движение в устье река соленой воды в магнитном поле Земли вызывает появ­ление ЭДС. Схема такого МГД-генератора Кельвина по­казана на рис. 3.1. В соответствии с законом электромагнитной индукции сила тока в проводниках 1, присоединенных к пластинам 2, опущенным в воду вдоль берегов реки, пропорциональна индукции магнитного поля! Земли и скорости течения соленой морской воды в реке.1 При изменении направления течения воды в реке изменялось также и направление электрического тока в проводниках между пластинами.

Принципиальная схема действия современного МГД-1 генератора (рис. 3.2) мало отличается от приведенной на рис. 3.1. В рассматриваемой схеме между металлическими пластинами, расположенными в сильном магнитном поле, пропускается струя ионизированного газа, обладающего кинетической энергией направленного движения частиц. При этом в соответствии с законом электромагнитной индукции появляется ЭДС, вызывающая протекание электрического тока между электродами! внутри канала генератора и во внешней цепи. Поток ионизированного газа - плазмы - тормозится под действием электродинамических сил, возникающих при взаимодействии протекающего в плазме тока и магнитного потока, Можно провести аналогию между возникающими силами и силами торможения, действующими со стороны рабочих лопаток паровых и газовых турбин на частички пара или газа. Преобразование энергии и про­исходит путем совершения работы по преодолению сил торможения.

Если какой-либо газ нагреть до высокой температу­ры (~3000°С), увеличив тем самым его внутреннюю энергию и превратив в электропроводное вещество, то при последующем расширении газа в рабочих каналах МГД-генератора произойдет прямое преобразование теп­ловой энергии в электрическую.

Рис. 3.3. Принципиальная схе­ма МГД-генератора с пароси­ловой установкой: " - камера сгорания; 2 - теплооб­менник; 3 - МГД-генератор; 4 - об­мотка электромагнита; 5 - паро­генератор; 6 - турбина; 7 - гене­ратор; 3 - конденсатор; 9 - насос

Принципиальная схема МГД-генератора с пароси­ловой установкой показана на рис. 3.3. В камере сгора­ния сжигается органическое топливо, получаемые при этомпродукты в плазменном состоянии с добавлением присадок направляются в расширяющийся канал МГД-генератора. Сильное магнит­ное поле создается мощными электромагнитами. Темпера­тура газа в канале генерато­ра должна быть не ниже 2000°С, а в камере сгорания 2500-2800°С. Необходи­мость ограничения мини­мальной температуры газов, покидающих МГД-генерато-ры, вызывается настолько значительным уменьшением электропроводности газов при температурах ниже 2000°С, что у них практиче­ски исчезает магнитогидро-дннамическое взаимодейст­вие с магнитным полем.

Теплота отработанных в МГД-генераторах газов вна­чале используется для подо­грева воздуха, подаваемого в камеру сгорания топлива, и, следовательно, повышения эффективности процесса его сжигания. Затем в паросиловой установке теплота расходуется на образование пара и доведение его пара­метров до необходимых величин.

Выходящие из канала МГД-генератора газы имеют температуру примерно 2000°С, а современные теплообменники, к сожалению, могут работать при температу­рах, не превышающих 800°С, поэтому при охлаждении газов часть теплоты теряется.

На рис. 3.4 (см. форзац II) схематически показаны основные элементы МГД-электростанции с паросиловой установкой и их взаимосвязи.

Трудности в создании МГД-генераторов состоят в по­лучении материалов необходимой прочности. Несмотря на статические условия работы, к материалам предъяв­ляют высокие требования, так как они должны длитель­но работать в агрессивных средах при высоких темпера­турах (2500-2800°С). Для нужд ракетной техники соз­даны материалы, способные работать в таких условиях, однако они могут работать непродолжительное время - в течение минут. Продолжительность работы промыш­ленных энергетических установок должна исчисляться, по крайней мере, месяцами.

Жаростойкость зависит не только от материалов, но и от среды. Например, вольфрамовая нить в электриче­ской лампе при температуре 2500-2700°С может рабо­тать в вакууме или среде нейтрального газа несколько тысяч часов, а в воздухе расплавляется через несколько секунд.

Понижение температуры плазмы добавлением к ней присадок вызывает повышенную коррозию конструкци­онных материалов. В настоящее время созданы материа­лы, которые могут работать длительно при температуре 2200-2500°С (графит, окись магния и др.), однако они не способны противостоять механическим напряжениям.

Несмотря на достигнутые успехи, задача создания материалов для МГД-генератора пока не решена. Ве­дутся также поиски газа с наилучшими свойствами. Гелий с небольшой добавкой цезия при температуре 2000°С имеет одинаковую проводимость с продуктами сгорания минерального топлива при температуре 2500°С. Разработан проект МГД-гекератора, работающего по замкнутому циклу, в котором гелий непрерывно цирку­лирует в системе.

Для работы МГД-генератора необходимо создавать сильное магнитное поле, которое можно получить про­пусканием огромных токов по обмоткам. Во избежание сильного нагревания обмоток и потерь энергии в них сопротивление проводников должно быть по возможно­сти наименьшим. Поэтому в качестве таких проводников целесообразно использовать сверхпроводящие мате­риалы.

МГД-генераторы с ядерными реакторами. Перспективны МГД-генераторы с ядерными реак­торами, используемыми для нагреваний газов и их тер­мической ионизации. Предполагаемая схема такой уста­новки показана на рис. 3.5.

Трудности создания МГД-ген ер а тор а с ядерным ре­актором состоят в том, что современные тепловыделя­ющие элементы, содержащие уран и покрытые окисью магния, допускают темпе­ратуру, не намного пре­вышающую 600°С, в то время как для ионизации газов необходима темпе­ратура, равная примерно 2000°С.

Первые опытные кон­струкции МГД-генерато-ров имеют пока высокую стоимость. В будущем можно ожидать сущест­венного снижения их стои­мости, что позволит ус­пешно использовать МГД-генераторы для покрытия пи­ков нагрузки в энергосистемах, т. е. в режимах относи­тельно непродолжительной работы. В этих режимах КПД не имеет решающего значения и МГД-генераторы могут использоваться и без паросиловой пристройки.

В настоящее время в СССР сооружены мощные опытно-промышленные образцы МГД-преобразователей энергии, на которых ведутся исследования по совершен­ствованию их конструкции и созданию эффективных МГД-электростанций, конкурентоспособных с обычны­ми электростанциями.

Рис. 3.5. Проект МГД-генератора с ядерным реактором:

1 - ядерный реактор; 2 - сопло; 3 - МГД-генератор; 4 - место кон­денсации щелочных металлов; 5 - насос; 6 - место ввода щелочных металлов

Из всех устройств, непосредственно преобразующих тепловую энергию в электрическую, термоэлектрические генераторы (ТЭГ) относительно небольшой мощности применяются наиболее широко.

Основные достоинства ТЭГ: 1) отсутствуют движу­щиеся части; 2) нет необходимости в высоких давлениях; 3) могут использоваться любые источники теплоты;

4) имеется большой ресурс работы.

В качестве источников энергии ТЭГ широко используют на космических объектах, ракетах, подводных лодках, маяках и многих других установках.

В зависимости от назначения ТЭГ могут преобразовывать в электрическую энергию теплоту, получаемую в атомных реакторах, энергию солнечной радиации, энергию органического топлива и т. д. Тепловая энергия, получаемая при распаде радиоактивных изотопов и делении ядер тяжелых элементов в реакторах, стала применяться в ТЭГ с конца 50-х годов.

Принцип работы термоэлемента основан на эффекте Зеебека. В 1921 г. Зеебек сообщил об экспериментам, связанных с отклонением магнитной стрелки вблизи термоэлектрических цепей. В этих исследованиях Зеебек не рассматривал задачу получения энергии. Сущность открытого эффекта состоит в том, что в замкнутой цепи, состоящей из разнородных материалов, протекает ток при разных температурах контактов материалов.

Эффект Зеебека можно качественно объяснить тем, что средняя энергия свободных электронов различна в разных проводниках и по-разному увеличивается с повышением температуры. Если вдоль проводника существует перепад температур, то возникает направленный поток электронов от горячего спая к холодному, вследствие чего у холодного спая образуется избыток отрицательных зарядов, у горячего - избыток положительных. Поток этот более интенсивен в проводниках с большой концентрацией электронов. В простейшем термоэлементе, замкнутая цепь которого состоит из двух проводников с разными концентрациями электронов и спаи поддерживаются при разных температурах, возникает электрический ток. Если цепь термоэлемента разомкнута, то накопление электронов на холодном конце увеличивает его отрицательный потенциал до тех пор, пока не установится динамическое равновесие между электронами, смещающимися к холодному концу, и электронами, уходящими от холодного конца под действием возникшей разности потенциалов. Чем меньше электропроводность материала, тем меньше скорость обратного перетока электронов, следовательно, тем выше ЭДС. Поэтому полупроводниковые элементы более эффективны, чем металлы.

Одно из практических применений ТЭГов - тепловой насос в одной части выделяющий, а в другой - поглоща­ющий теплоту за счет электрической энергии. Если из­менить направление тока, то насос будет работать в противоположном режиме, т. е. части, в которых проис­ходит выделение и поглощение теплоты, поменяются местами. Такие тепловые насосы могут успешно приме­няться для терморегуляции жилых и прочих помещений. Зимой насосы нагревают воздух в помещении и охлаж­дают его на улице (рис. 3.6, а), а летом, наоборот, охлаждают воздух в помещении и нагревают на улице (рис. 3.6,б). На рис. 3.6, в показаны общий вид и схема установки теплового насоса в помещении.

В настоящее время созданы полупроводники, работа­ющие при температуре более 500°С. Однако для про­мышленного ТЭГ потребуется температуру горячего спая довести примерно до 1100°С. При таком повышении тем­пературы полупроводники различных типов проявляют тенденцию к превращению в собственно полупроводни­ки, у которых числа носителей положительных и отрица­тельных зарядов равны. Эти заряды при создании гра­диента температуры перемещаются от горячего спая к холодному в равном количестве и, следовательно, накап­ливание потенциала не происходит, т. е. не создается термо-ЭДС. Собственно полупроводники бесполезны для целей генерирования термоэлектрического тока.

В настоящее время широко ведутся исследования по созданию полупроводников, работающих при высоких температурах. Для работы ТЭГа можно использовать теплоту, получаемую в реакторах при делении ядер тя­желых элементов. Однако в этом случае требуется ре­шить ряд задач, в частности определить влияние эффекта сильного радиационного воздействия на полупроводнико­вые материалы, так как ядерное горючее может нахо­диться в непосредственном контакте с полупроводнико­выми материалами.

Вопрос о целесообразности применения тех или иных источников энергии решается в пользу ТЭГ в тех слу­чаях, когда ведущее значение имеет не КПД, а компакт­ность, надежность, портативность, удобства.

В СССР создан надежный промышленный ТЭГ на ядерном горючем - «Ромашка». Электрическая мощ­ность его равна 500 Вт.

Естественный радиоактивный распад ядер сопровож­дается выделением кинетической энергии частиц и у-квантов. Эта энергия поглощается средой, окружаю­щей радиоактивный изотоп, и превращается в теплоту, которую можно использовать для получения электриче­ской энергии термоэлектрическим способом. Установки, преобразующие энергию естественного радиоактивного распада в электрическую энергию с помощью термоэлементов, называются радиоизотопными термогенератора­ми. Радиоизотопные термогенераторы надежны в рабо­те, обладают большим сроком службы, компактны и успешно используются в качестве автономных источни­ков энергии для различных установок космического и наземного назначений.

Современные радиоизотопные генераторы имеют КПД, равный 3-5%, и срок службы от 3 месяцев до 10 лет. Технико-экономические характеристики этих ге­нераторов в будущем могут быть значительно улучшены. В настоящее время создаются проекты генераторов мощностью до 10 кВт.

К радиоизотопным термогенераторам проявляют ин­терес различные отрасли науки и техники. Их предпола­гается использовать в виде источника энергии искусст­венного сердца человека, а также для стимулирования работы различных органов в живых организмах. Осо­бенно пригодными оказались радиоизотопные термогене­раторы при освоении космического пространства, где необходимы источники энергии, способные длительно и надежно работать в неблагоприятных условиях воздей­ствия ионизирующих излучений, в радиационных поясах, на поверхности других планет и их спутников.

Явление термоэлектронной эмиссии было открыто Т. Эдисоном в 1883 г. Работая над созданием электри­ческой лампы, Эдисон помещал в колбе две нити. Когда перегорала одна из них, он поворачивал лампу и вклю­чал другую. Во время испытания ламп обнаруживалось, что некоторое количество электричества переходит к хо­лодной нити, т. е. электроны «испаряются» с горячей нити - катода - и движутся к холодной нити - ано­ду - и далее во внешнюю электрическую цепь. При этом часть тепловой энергии, расходуемой на нагревание катода, переносится электронами и отдается аноду, а часть энергии электронов выделяется во внешней элек­трической цепи при протекании электрического тока.

Анод разогревается за счет теплоты, приносимой электронами. Если бы температуры катода и анода бы­ли одинаковыми, то теплота «испарения» электронов с катода в точности была бы равна теплоте «конденсации» электронов на аноде и не было бы преобразования теп­лоты в электрическую энергию. Чем меньше температура анода по сравнению с температурой катода, тем большая часть тепловой энергии превращается в элeктpичeскую. Простейшая схема термоэмиссионного преобразователя энергии показана на рис. 3.7.

Рис. 3.7. Устройст­во термоэмиссионного преобразователя

энергии: 1 - катод; 2 - анод

В процессе термоэлектронной эмиссии с поверхности металлов происходит выход свободных электронов. В металлах содержится большое число свободных электронов - около 6×10 21 в 1 см 3 . Внутри металла силы притяжения электрона сбалансированы положительно заряженными ядрами (рис. 3.8). Непосредственно у по­верхности на электроны действуют результирующие силы притяжения, для преодоления которых и выхода за пре­делы металла электрону нужно обладать достаточной кинетической энергией. Увеличение кинетической энер­гии происходит при нагревании металла.

Рис. 3.8. Возникновение результирующих сил, действующих на электрон в металле и вблизи его поверхности

В энергетических термоэмиссионных генераторах для нагревания катода можно воспользоваться теплотой, по­лучаемой в результате ядерной реакции. Схема ядерно­го термоэмиссионного преобразователя приведена на рис. 3.9. КПД первых таких преобразователей был равен примерно 15%; по существующим прогнозам его можно довести до 40%.

Испускание электронов в термоэмиссионных генера­торах вызывается нагреванием катода. При радиоактив­ном распаде электроны (р-лучи) испускаются вследствие естественного свойства элементов. Непосредственно ис­пользуя это свойство, можно осуществить прямое преобразование ядерной энергии в электрическую (рис. 3.10).

Рис. 3.9. Ядерный термоэмиссионный преобразователь: 1 - защита; 2 - охладитель; 3 -анод; 4-вакуум; 5 - катод; б -ядерное горючее

Рис. 3.10. Схема установки прямого преобразования ядерной энергии в электрическую: 1- β -радиоактивный излучатель; 2 - металлическая ампула; 3 - металлический сосуд

В электрохимических генераторах происходит прямое преобразование химической энергии в электрическую. Возникновение ЭДС в гальваническом элементе связано со способностью металлов посылать свои ионы в раствор в результате молекулярного взаимодействия между ионами металла и молекулами (и ионами) раствора.

Рассмотрим явления, происходящие при опускании цинкового электрода в раствор сернокислого цинка (ZnSO 4). Молекулы воды стремятся окружить положительные ионы цинка в металле (рис. 3.11). В результате действия электростатических сил положительные ионы цинка переходят в раствор сернокислого цинка. Этому переходу способствует большой дипольный момент воды.

Наряду с процессом растворения цинка происходит и обратный процесс возвращения в цинковый электрод положительных ионов цинка при дости­жении ими электрода в результате тепло­вого движения.

По мере перехода положительных ионов в раствор увеличивается отрица­тельный потенциал электрода, препятст­вующий этому переходу. При некотором потенциале металла наступает динами­ческое равновесие, т. е. два встречных потока ионов (от электрода в раствор и обратно) будут одинаковы. Этот равно­весный потенциал называется электро­химическим потенциалом металла отно­сительно данного электролита.

Важное техническое приложение галь­ванические элементы нашли в аккумуля­торах, где вещество, расходующееся при отборе тока, предварительно накаплива­ется на электродах при пропускании через них в течение некоторого времени тока от постороннего источника (при зарядке). Применение аккумуляторов в энергетике за­труднено вследствие малого запаса активного химиче­ского горючего, не позволяющего получать непрерывно электроэнергию в больших количествах. Кроме того, для аккумуляторов характерна малая удельная мощ­ность.

Большое внимание во многих странах мира уделяет­ся непосредственному преобразованию химической энер­гии органического топлива в электрическую, осуществ­ляемому в топливных элементах. В этих преобразовате­лях энергии можно получить более высокие значения КПД, чем у тепловых машин. В 1893 г. немецкий физик и химикНернст вычислил, что теоретический КПД эле­ктрохимического процесса превращения химической энергии угля в электрическую равен 99,75%.

Рис. 3.11. Рас­положение электрических зарядов, спо­собствующих переходу поло­жительных ио­нов цинка в раствор серно­кислого цинка

На рис. 3.12 показана принципиальная схема водородно-кислородного топливного элемента. Электроды в топливном элементе выполнены пористыми. На аноде происходит переход положительных ионов водорода в электролит. Оставшиеся электроны создают отрицатель­ный потенциал и во внешней цепи перемещаются к като­ду. Атомы кислорода, находящиеся на катоде, присоеди­няют к себе электроны, образуя отрицательные ионы, которые, присоединяя из во­ды атомы водорода, перехо­дят в раствор в виде ионов гидроксила ОН-. Ионы гидроксила, соединяясь с иона­ми водорода, образуют во­ду. Таким образом, при под­воде водорода и кислорода происходит реакция окисле­ния горючего ионами с одно­временным образованием тока во внешней цепи. Так как напряжение на выводах элемента невелико (порядка 1 В), то элементы последо­вательно соединяют в бата­реи. КПД топливных элементов очень высок. Теоретиче­ски он близок к единице а практически он равен 60- 80%.

Использование водорода в качестве топлива сопря­жено с высокой стоимостью эксплуатации топливных элементов, поэтому изыскиваются возможности приме­нения других более дешевых видов топлива, в первую очередь природного и генераторного газа. Однако удов­летворительные скорости протекания реакции окисления газа происходят при высоких температурах 800-1200 К, что исключает применение в качестве электролитов во­дяных растворов щелочи. В этом случае можно исполь­зовать твердые электролиты с ионной проводимостью.

В настоящее время широко ведутся работы над соз­данием эффективных высокотемпературных топливных элементов. Пока удельная мощность топливных элемен­тов все еще невелика. Она в несколько раз ниже, чем у двигателей внутреннего сгорания. Однако успехи электрохимии и конструктивные усовершенствования топлив­ных элементов в недалеком будущем сделают возмож­ным применение топливных элементов в автотранспорте и энергетике. Топливные элементы бесшумны, экономич­ны и у них отсутствуют вредные отходы, загрязняющие атмосферу.

Рис. 3.12. Схема водородно-кислородного топливного эле­мента:

1 - корпус; 2- катод; 3 - электро­лит; 4 - анод

Поступающая по линиям электропередач энергия не всегда используется в чистом виде. Для выполнения специфических задач она преобразуется электротехническими устройствами, изменяющими один или несколько параметров – вид напряжения, частоту и другие.

Преобразователи электроэнергии: классификация

Эти устройства классифицируются по нескольким признакам:

  1. Виду преобразований.
  2. Типу конструкции.
  3. Управляемости.

Параметры, которые изменяются

Преобразованию подвергаются следующие параметры:

  1. Тип напряжения – из переменного в постоянное и наоборот.
  2. Амплитудные значения тока и напряжения.
  3. Частота.

Типы конструкций

Эти устройства подразделяются на электромашинные и полупроводниковые.

Электромашинные (вращательные) состоят из двух машин, одна – привод, а другая – исполнительное устройство. Например, для превращения переменного тока в постоянный используется асинхронный двигатель переменного тока (привод) и генератор постоянного (исполнитель). Их недостаток – большие габариты и масса. Кроме того, суммарный КПД технологической связки ниже, чем у одиночной электрической машины.

Полупроводниковые (статические) преобразователи, строятся на основе электротехнических схем, состоящих из полупроводниковых или ламповых элементов. Их КПД выше, размеры и масса небольшие, но качество электроэнергии на выходе невысокое.

Управляемые и неуправляемые

Если величина изменения параметра электрической энергии фиксированная, то используется неуправляемый преобразователь. Такие устройства применяются в первых каскадах блоков питания. Пример – силовой трансформатор, понижающий сетевое напряжение с 220 до 12 вольт.

Преобразователи с изменяемыми параметрами являются исполнительными устройствами в управляемых электротехнических цепях. Например, изменяя частоту питающего напряжения, регулируют частоту вращения асинхронных двигателей.

Преобразователи электроэнергии: примеры устройств

Преобразователи могут выполнять либо какую-то одну функцию, либо несколько.

Изменение типа напряжения

Те устройства, которые превращают переменный ток в постоянный называются выпрямителями. Действующие наоборот – инверторами.

Если это электромашинное устройство, то выпрямитель состоит из асинхронного двигателя переменного тока, вращающего ротор генератора постоянного. Входные и выходные линии электрического контакта не имеют.

Наиболее распространенных тип схемы статического выпрямителя – диодный мост. В нем четыре элемента (диода) с односторонней проводимостью, включенные встречно. После него обязательно ставят электролитический конденсатор, который сглаживает пульсирующее напряжение.

Существует гибридная конструкция, объединяющая электромашинный и статический выпрямители. Это автомобильный генератор, являющийся машиной переменного тока, статорные обмотки которого подключены к выпрямительному мосту с конденсатором.

Инверторные схемы применяются для запуска генератора незатухающих колебаний (мультивибратор), построенного на тиристорах или транзисторах. Они являются основой преобразователей частоты.

Изменение амплитудных значений

Это все виды трансформаторов – понижающих, повышающих, балластных.

Управляемые трансформаторы называются реостатами. Если они включаются параллельно источнику электроэнергии, то изменяют напряжение. Последовательно – ток.

Для поглощения тепла, выделяющегося при работе мощных высоковольтных сетевых трансформаторов, применяются системы жидкостного (масляного) охлаждения.

Изменение частоты

Частотные преобразователи бывают как электромашинными (вращательными), так и статическими.

Исполнительным механизмом вращательных преобразователей частоты является высокочастотный асинхронный трехфазный генератор. Его ротор вращает электромотор постоянного или переменного тока. Как и у выпрямителя вращательного типа, входные и выходные линии у него не имеют электрического контакта.

Инверторные схемы, используемые в преобразователях частоты статического типа, бывают управляемые и неуправляемые. Повышение частоты позволяет уменьшить габариты устройств. Трансформатор с рабочей частотой в 400 Гц в восемь раз меньше, чем работающий от 50 Гц. Это свойство используется для построения компактных сварочных инверторов.

Можно назвать три основных способа преобразования энергии. Первый из них заключается в получении тепловой энергии при сжигании топлива (ископаемого или растительного происхождения) и потреблении ее для непосредственного обогревания жилых домов, школ, предприятий и т. п. Второй способ – преобразование заключенной в топливе тепловой энергии в механическую работу, например, при использовании продуктов перегонки нефти для обеспечения движения различного оборудования, автомобилей, тракторов, поездов, самолетов и т. д. Третий способ – преобразование тепла, высвобождающегося при сгорании топлива или деления ядер, в электрическую энергию с последующим ее потреблением либо для производства тепла, либо для выполнения механической работы.

Электроэнергия получается и при преобразовании энергии падающей воды. Электроэнергия таким образом играет роль своеобразного посредника между источниками энергии и ее потребителями (рис. 9.1). Как посредник на рынке ведет к повышению цен, так и потребление энергии в форме электричества приводит к росту цен из-за потерь при преобразовании одного вида энергии в другой. В то же время преобразование различных форм энергии в электрическую удобно, практично, а иногда это единственно возможный путь реального потребления энергии. В ряде случаев просто невозможно эффективно использовать энергию, не превратив ее в электрическую. До открытия электричества энергия падающей воды (гидроэнергия) применялась для обеспечения движения механических устройств: прядильных машин, мельниц, лесопилок и т. д. После преобразования гидроэнергии в электрическую сфера применения значительно расширялась, стало возможным ее потребление на значительных расстояниях от источника. Энергию деления ядер урана, например, невозможно непосредственно использовать без превращения ее в электрическую.

Ископаемые виды топлива, в отличие от гидроисточников, долгое время применялись лишь для отопления и освещения, а не для работы различных механизмов. Дрова и уголь, а нередко и высушенный торф сжигались для обогрева жилых домов, общественных и промышленных зданий. Уголь, кроме того, применялся и применяется для выплавки металла. Угольное масло, полученное путем перегонки угля, заливалось в лампы. Только после изобретения паровой машины в XVIII в. был по-настоящему раскрыт потенциал данного ископаемого топлива, ставшего источником не только тепла и света, но и движения различных механизмов и машин. Появились паровозы, пароходы с паровыми двигателями, работавшие на угле. В начале XX в. уголь начали сжигать в топках котлов электростанций для производства электроэнергии.

В настоящее время ископаемое топливо играет исключительно важную роль. Оно дает тепло и свет, является одним из основных источников электроэнергии и механической энергии для обеспечения огромного парка многочисленных машин и различных видов транспорта. Не следует забывать, что ископаемое органическое сырье в огромных количествах потребляется химической промышленностью для производства большого многообразия полезной и ценной продукции.