Кинетическая и потенциальная энергия коротка. Работа

Кинетическая энергия механической системы - это энергия механического движения этой системы.

Сила F , действуя на покоящееся тело и вызывая его движение, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона F =mdv /dt

и умножая обе части равенства на перемещение dr , получим

F dr =m(dv /dt)dr=dA

Таким образом, тело массой т, движущееся со скоростью v, обладает кинетической энергией

Т = т v 2 /2. (12.1)

Из формулы (12.1) видно, что кинетическая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее движения.

При выводе формулы (12.1) предполагалось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать законы Ньютона. В разных инерциальных системах отсчета, движущихся друг относительно друга, скорость тела, а следовательно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетическая энергия зависит от выбора системы отсчета.

Потенциальная энергия - механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является сила трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элементарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

Работа dА выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

F dr =-dП. (12.3)

Следовательно, если известна функция П(r ), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С - постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной постоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциальную энергию тела в каком-то определенном положении считают равной нулю (выбирают нулевой уровень отсчета), а энергию тела в других положениях отсчитывают относительно нулевого уровня. Для консервативных сил

или в векторном виде

F =-gradП, (12.4) где

(i, j, k - единичные векторы координатных осей). Вектор, определяемый выражением (12.5), называется градиентом скаляра П.

Для него наряду с обозначением grad П применяется также обозначение П.  («набла») означает символический вектор, называемый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h"), П= - mgh".

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна деформации:

F х упр = -kx,

где F x упр - проекция силы упругости на ось х; k - коэффициент упругости (для пружины - жесткость), а знак минус указывает, что F x упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, деформирующая сила равна по модулю силе упругости и противоположно ей направлена, т. е.

F x =-F x упр =kx Элементарная работа dA, совершаемая силой F x при бесконечно малой деформации dx, равна

dA = F x dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П=kx 2 /2.

Потенциальная энергия системы, подобно кинетической энергии, является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.

Полная механическая энергия системы - энергия механического движения и взаимодействия:

т. е. равна сумме кинетической и потенциальной энергий.

Одной из характеристик любой системы является ее кинетическая и потенциальная энергия. Если какая-либо сила F оказывает действие на находящееся в покое тело таким образом, что последнее приходит в движение, то имеет место совершение работы dA. В этом случае значение кинетической энергии dT становится тем выше, чем больше совершено работы. Другими словами, можно написать равенство:

Учитывая путь dR, пройденный телом, и развиваемую скорость dV, воспользуемся вторым для силы:

Важный момент: данный закон можно использовать в том случае, если взята инерциальная система отсчета. Выбор системы влияет на значение энергии. В международной энергия измеряется в джоулях (дж).

Отсюда следует, что частицы или тела, характеризующейся скоростью перемещения V и массой m, составит:

T = ((V * V)*m) / 2

Можно сделать вывод, что кинетическая энергия определяется скоростью и массой, фактически представляя собой функцию движения.

Кинетическая и потенциальная энергия позволяют описать состояние тела. Если первая, как уже было сказано, непосредственно связана с движением, то вторая применяется в отношении системы взаимодействующих тел. Кинетическая и обычно рассматриваются для примеров, когда сила, связывающая тела, не зависит от В таком случае важны лишь начальное и конечное положения. Самый известный пример - гравитационное взаимодействие. А вот если важна и траектория, то сила является диссипативной (трение).

Говоря простым языком, потенциальная энергия представляет собой возможность совершить работу. Соответственно, эта энергия может быть рассмотрена в виде работы, которую нужно совершить для перемещения тела из одной точки в другую. То есть:

Если потенциальную энергию обозначить как dP, то получаем:

Отрицательное значение указывает, что выполнение работы происходит благодаря уменьшению dP. Для известной функции dP возможно определить не только модуль силы F, но и вектор ее направления.

Изменение кинетической энергии всегда связано с потенциальной. Это легко понять, если вспомнить системы. Суммарное значение T+dP при перемещении тела всегда остается неизменным. Таким образом, изменение T всегда происходит параллельно с изменением dP, они словно перетекают друг в друга, преобразовываясь.

Так как кинетическая и потенциальная энергия взаимосвязаны, их сумма представляет собой полную энергию рассматриваемой системы. В отношении молекул она является и присутствует всегда, пока есть хотя бы тепловое движение и взаимодействие.

При выполнении расчетов выбирается система отсчета и любой произвольный момент, взятый за начальный. Точно определить значение потенциальной энергии можно лишь в зоне действия таких сил, которые при совершении работы не зависят от траектории перемещения какой-либо частицы или тела. В физике такие силы получили название консервативных. Они всегда взаимосвязаны с законом сохранения полной энергии.

Интересный момент: в ситуации, когда внешние воздействия минимальны или нивелируются, любая изучаемая система всегда стремится к такому своему состоянию, когда ее потенциальная энергия стремится к нулю. К примеру, подброшенный мяч достигает предела своей потенциальной энергии в верхней точке траектории, но в то же мгновение начинает движение вниз, преобразуя накопленную энергию в движение, в выполняемую работу. Стоит еще раз обратить внимание, что для потенциальной энергии всегда имеет место взаимодействие как минимум двух тел: так, в примере с мячом на него оказывает влияние гравитация планеты. Кинетическая же энергия может быть рассчитана индивидуально для каждого движущегося тела.

Потенциальной энергией называется энергия, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое над Землей, потому что энергия тела зависит от взаимного положения его и Земли и их взаимного притяжения. Потенциальная энергия тела, лежащего на Земле, равна нулю. А потенциальная энергия этого тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Огромной потенциальной энергией обладает речная вода, удерживаемая плотиной. Падая вниз, она совершает работу, приводя в движение мощные турбины электростанций.

Потенциальную энергию тела обозначают символом E п.

Так как E п = A, то

E п = Fh

E п = gmh

E п – потенциальная энергия; g – ускорение свободного падения, равное 9,8 Н/кг; m – масса тела, h – высота, на которую поднято тело.

Кинетической энергией называется энергия, которой обладает тело вследствие своего движения.

Кинетическая энергия тела зависит от его скорости и массы. Например, чем больше скорость падения воды в реке и чем больше масса этой воды, тем сильнее будут вращаться турбины электростанций.

mv 2
E k = --
2

E k – кинетическая энергия; m – масса тела; v – скорость движения тела.

В природе, технике, быту один вид механической энергии обычно превращается в другой: потенциальная в кинетическую и кинетическая в потенциальную.

Например, при падении воды с плотины ее потенциальная энергия превращается в кинетическую. В качающемся маятнике периодически эти виды энергии переходят друг в друга.

Слово «энергия» в переводе с греческого означает «действие». Энергичным мы называем человека, который активно двигается, производя при этом множество разнообразных действий.

Энергия в физике

И если в жизни энергию человека мы можем оценивать в основном по последствиям его деятельности, то в физике энергию можно измерять и изучать множеством различных способов. Ваш бодрый друг или сосед, скорее всего, откажется повторить тридцать-пятьдесят раз одно и то же действие, когда вдруг вам взбредет на ум исследовать феномен его энергичности.

А вот в физике вы можете повторять почти любые опыты сколь угодно много раз, производя необходимые вам исследования. Так и с изучением энергии. Ученые-исследователи изучили и обозначили множество видов энергии в физике. Это электрическая, магнитная, атомная энергия и так далее. Но сейчас мы поговорим о механической энергии. А конкретнее о кинетической и потенциальной энергии.

Кинетическая и потенциальная энергия

В механике изучают движение и взаимодействие тел друг с другом. Поэтому принято различать два вида механической энергии: энергию, обусловленную движением тел, или кинетическую энергию, и энергию, обусловленную взаимодействием тел, или потенциальную энергию.

В физике существует общее правило, связывающее энергию и работу. Чтобы найти энергию тела, надо найти работу, которая необходима для перевода тела в данное состояние из нулевого, то есть такого, при котором его энергия равна нулю.

Потенциальная энергия

В физике потенциальной энергией называют энергию, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела. То есть, если тело поднято над землей, то оно обладает возможностью падая, произвести какую-либо работу.

И возможная величина этой работы будет равна потенциальной энергии тела на высоте h. Для потенциальной энергии формула определяется по следующей схеме:

A=Fs=Fт*h=mgh, или Eп=mgh,

где Eп потенциальная энергия тела,
m масса тела,
h - высота тела над поверхностью земли,
g ускорение свободного падения.

Причем за нулевое положение тела может быть принято любое удобное нам положение в зависимости от условий проводимых опыта и измерений, не только поверхность Земли. Это может быть поверхность пола, стола и так далее.

Кинетическая энергия

В случае, когда тело движется под влиянием силы, оно уже не только может, но и совершает какую-то работу. В физике кинетической энергией называется энергия, которой обладает тело вследствие своего движения. Тело, двигаясь, расходует свою энергию и совершает работу. Для кинетической энергии формула рассчитывается следующей образом:

A = Fs = mas = m * v / t * vt / 2 = (mv^2) / 2 , или Eк= (mv^2) / 2 ,

где Eк кинетическая энергия тела,
m масса тела,
v скорость тела.

Из формулы видно, что чем больше масса и скорость тела, тем выше его кинетическая энергия.

Каждое тело обладает либо кинетической, либо потенциальной энергией, либо и той, и другой сразу, как, например, летящий самолет.

Кинетической энергией тела называют физическую величину, которая равна половине произведения массы тела на его скорость в квадрате. Это энергия движения, она эквивалентна той работе, которую должна совершить сила, приложенная к телу в состоянии покоя, для того, чтобы сообщить ему заданную скорость. После удара кинетическая энергия может преобразоваться в иной вид энергии, например, в звуковую, световую или тепловую.

Утверждение, которое называют теоремой о кинетической энергии, говорит о том, что ее изменение является работой равнодействующей силы, приложенной к телу. Данная теорема справедлива всегда, даже если тело движется под действием непрерывно меняющейся силы, а ее направление не совпадает с направлением его перемещения.

Потенциальная энергия

Потенциальная энергия определяется не скоростью, а взаимным положением тел, например, относительно Земли. Данное понятие может быть введено только для тех сил, работа которых не зависит от траектории движения тела, а определяется только его начальным и конечным положениями. Такие силы называют консервативными, их работа равна нулю, если тело перемещается по замкнутой траектории.

Консервативные силы и потенциальная энергия

Сила тяжести и сила упругости являются консервативными, для них можно ввести понятие потенциальной энергии. Физический смысл имеет не сама потенциальная энергия, а ее изменение при перемещении тела из одного положения в другое.

Изменение потенциальной энергии тела в поле силы тяжести, взятое с противоположным знаком, равно работе, которую совершает сила для перемещения тела. При упругой деформации потенциальная энергия зависит от взаимодействия частей тела друг с другом. Обладая определенным запасом потенциальной энергии, сжатая или растянутая пружина может привести в движение тело, которое к ней прикреплено, то есть сообщить ему кинетическую энергию.

Помимо сил упругости и тяжести свойством консервативности обладают другие виды сил, например, сила электростатического взаимодействия заряженных тел. Для силы трения понятие потенциальной энергии нельзя ввести, ее работа будет зависеть от пройденного пути.