Превращения электрической энергии в механическую. Преобразование энергии при электровозной тяге Принципы получения переменного и постоянного тока

Превращение механичевкой энергии в электрическую. Возникновение разности потенциалов на концах проводника, движущегося в магнитном поле, дает возможность использовать это явление для получения электрического тока. По такому принципу действуют промышленные генераторы электроэнергии на тепловых, ядерных и гидроэлектростанциях. В них поступательное движение проводников заменено более удобным вращательным.

Откуда же берется энергия для разделения зарядов и появления ЭДС в генераторе? Ведь магнитное поле не совершает работы над движущимися зарядами, так как работа силы всегда перпендикулярной вектору скорости, равна нулю. Работа по разделению зарядов в движущихся проводниках электромагнитного генератора на тепловых электростанциях производится за счет механической энергии пара, давящего на лопатки паровой турбины, на гидроэлектростанциях эта работа совершается за счет механической энергии воды, вращающей гидротурбины, имеющие общий вал с генератором. В этом процессе магнитное поле является только посредником, вызывающим разделение зарядов. Не сила действующая со стороны магнитного поля, выполняет роль сторонней силы, а силы, приводящие во вращение ротор генератора.

Самые мощные в мире генераторы электроэнергии изготовляются и используются в нашей стране.

МГД-генератор. Наиболее распространенный способ получения электроэнергии на тепловых электростанциях довольно сложен. Сначала топливо сжигается в топке парового котла, и получается пар. Затем пар направляется на лопатки турбины и приводит ее в действие. Наконец электромеханический генератор превращает полученную от турбины механическую энергию в энергию электрического тока. На каждом из этапов преобразования одного вида энергии в другой происходят значительные потери энергии. В результате кпд тепловых электростанций обычно не превышает 35-40%. Это значит, что около 60-65% угля, нефти или газа сжигается в топках впустую.

Так как КПД любой тепловой машины в идеальном случае не превышает величины

где - температура нагревателя, а -температура холодильника, то важнейшей задачей при разработке новых способов преобразования энергии является повышение температуры рабочего тела.

Значительного повышения температуры рабочего тела удается добиться в магнитогазодинамических генераторах электроэнергии, сокращенно называемых МГД-генераторами.

Схема устройства МГД-генератора показана на рисунке 90. В камере сгорания при сжигании нефти, керосина или природного газа создается высокая температура (2000-3000 К), при которой газообразные продукты сгорания ионизируются, образуя электронно-ионную плазму. Для повышения электропроводности плазмы в камеру сгорания вводят легкоионизирующиеся вещества: кальций, натрий, цезий. Раскаленная плазма движется по расширяющемуся каналу длиной в несколько метров, в котором ее внутренняя

Рис. 90. Схема устройства МГД-генератора

энергия превращается в кинетическую энергию и скорость возрастает до 2000 м/с и более. Так же как и металлический проводник, плазма в целом нейтральна, но, влетая в область сильного магнитного поля, составляющие ее частицы разных знаков под действием силы разделяются, как показано на рисунке 90. Электроны, достигнув нижнего электрода, движутся во внешней цепи по сопротивлению нагрузки к другому электроду, где нейтрализуют положительные ионы. Мощность, выделяемая во внешней цепи, может быть использована для различных практических нужд.

В режиме холостого хода, когда внешняя цепь разомкнута между электродами возникает наибольшая разность потенциалов, равная ЭДС. В зависимости от конструкции генератора она может достигать нескольких сотен или тысяч вольт.

В МГД-генераторе сильно нагрета только плазма и отсутствуют движущиеся детали, подвергаемые, подобно лопаткам турбин, одновременному воздействию больших механических напряжений и высоких температур. Возможность использовать огнеупорные материалы и применять охлаждение неподвижных металлических детален, соприкасающихся с плазмой, позволяет повысить температуру рабочего тела, а значит, и КПД установки. Для температуры плазмы, равной на входе а на выходе теоретическое значение КПД составляет примерно 90%. Однако в реальных условиях температура отработанных газов на выходе из канала больше 300 К. Но если отработанные и уже не ионизированные продукты сгорания использовать для получения пара и приведения в действие турбины обычного электромашинного генератора, то реальный КПД всей такой установки будет равен 50-60%. А это почти вдвое превышает реальный КПД тепловых электростанций. Следовательно, при том же расходе топлива с помощью МГД-генераторов можно получить вдвое больше электроэнергии.

Еще одним преимуществом МГД-генераторов является то, что они могут развивать полную мощность, измеряемую сотнями миллионов ватт, всего за несколько секунд после запуска. Поэтому МГД-генераторы выгодно применять как резервные источники электроэнергии на случай резкого увеличения потребления энергии в энергосистемах.

Высокий КПД, простота конструкции, малые габариты МГД-генераторов при большой мощности позволяют надеяться, что с преодолением их основного недостатка - сравнительно небольшого срока службы, вызванного износом стенок сопла, - они начнут широко применяться для получения электроэнергии в промышленных масштабах.

Первая опытно-промышленная электростанция с МГД-генера-тором мощностью 25 000 000 Вт была запущена в нашей стране в 1971 г.

Сегодня всем нам знакомы бытовые электрогенераторы. В зависимости от потребляемого топлива, назначения и типа используемого двигателя, это могут быть бензиновые, газовые, дизельные и даже ветряные электрические генераторы . Эти устройства прочно вошли в нашу жизнь, и мы привыкли использовать их на даче и в походе, на стройке и в гараже. Множество типов электрогенераторов и электроприборов выполняет за нас работу. Портативные ручные электрогенераторы встраиваются в фонарики, солнечные батареи питают удаленные приборы и датчики, космические спутники и оборудование альпинистов. Но так было не всегда. Начало 19 века разразилось целой чередой открытий, связанных с электричеством и магнетизмом.

После открытия и исследования электромагнитной индукции и проведенного расчета, стала очевидной возможность создать электрогенератор, который сможет преобразовывать механическую энергию в энергию электрическую. Для получения тока в замкнутом витке проволоки нужно изменять пронизывающий его поток индукции. Сделать это можно двояким путем: либо перемещать магнит относительно витка проволоки, либо перемещать виток проволоки относительно магнита.

Первый самодельный магнитный генератор электрического тока, построенный в 1832 г., был весьма простой установкой. Посмотрите на его чертеж: вы видите, что ЭДС в обмотках его катушек возбуждалась вращением подковообразного магнита. Ток, создаваемый такой машиной, был не похож на ток от гальванического элемента - он как бы метался из стороны в сторону, то и дело меняя свое направление. Этот ток назвали переменным, в отличие от постоянного тока , производимого гальваническим элементом.

По-иному выглядела установка другого электрического генератора: рамка проводника вращалась между неподвижными полюсами магнита. Ее концы соединялись с двумя кольцами на оси вращения рамки, а к кольцам при помощи скользящих контактов подключалась электрическая цепь . На контактах колец возникал то «плюс», то «минус», что и означало генерирование переменной ЭДС.

То, что ток получался переменным, сочли недостатком и принялись искать способ его выпрямить. Для этого прибегли к так называемому коммутатору. Во второй машине, например, оба конца рамки подсоединили к кольцу, которое разрезали пополам, и изолировали каждую половину слоем не проводящего ток вещества. Один скользящий контакт касался только того конца вращающейся рамки, на котором был «плюс», а второй контакт замыкался на «минусе». Но хотя ток в цепи и стал постоянным по направлению, его величина менялась с каждым полуоборотом рамки.

Чтобы избежать резких изменений величины тока, увеличили количество рамок. Их концы подсоединили к диаметрально противоположным участкам разрезанного кольца-коллектора электрогенератора. Ток от такого магнитного генератора тем более похож на постоянный, чем больше рамок на вращающемся барабане - роторе (неподвижные магниты в такой машине называют статором).

Электрогенераторы постоянного и переменного тока очень похожи по своему устройству на электродвигатели. Кроме того, если вращать якорь электромотора постоянного тока, на его обмотках появляется разница потенциалов – мотор начинает давать электрический ток , становясь электрогенератором. Однако по техническим соображениям электрические генераторы тока строят несколько иначе, чем электродвигатели.

Возьмем, к примеру, электрогенератор переменного тока крупной тепловой электростанции

Его статор имеет внутри обмотку, в которой и возникает электрический ток. Ротор представляет собой цилиндр с двумя магнитными полюсами: северным и южным. Если намагнитить ротор, пропустив в полюсные обмотки постоянный ток от постороннего источника, и затем начать его вращать, в обмотке статора появится переменный ток.

Для возбуждения и работы ротора обычно применяют отдельный небольшой генератор постоянного тока. Этот электрогенератор надевают прямо на вал ротора. Есть и иной вариант конструкции – вместо генератора-возбудителя действует полупроводниковый выпрямитель тока. Он отбирает ничтожную часть мощности самого электрогенератора, выпрямляет переменный ток, и полученным током питает обмотку ротора.

В нашей стране принят стандарт частоты переменного тока равной 50 периодам в секунду – 50 Гц. Это означает, что в течение секунды ток должен 50 раз течь в одну сторону и 50 раз – в другую. Соответственно, и ротор должен делать ровно 50 оборотов в секунду, или 3000 оборотов в минуту. С такой скоростью и находятся в работе электрогенераторы тепловых станций: их приводят в движение газотурбинные блоки, специально рассчитанные на такой ход.

Это происходит так же часто, как и в электрогенераторе тепловой электростанции, где скорость вращения газотурбинной установки составляет 3000 оборотов в минуту. Таким образом, частота в 50 периодов сохраняется и здесь.

Просто о сложном – Электрогенераторы для производства электроэнергии

  • Галерея изображений, картинки, фотографии.
  • Электрогенераторы – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Электрогенераторы.
  • Ссылки на материалы и источники – Электрогенераторы для производства электроэнергии.

Генератор – устройство превращающее энергию различного вида в электрическую. Генераторы вырабатывают электрический ток. Примеры генераторов: гальванические элементы, электростатические машины, солнечные батареи и др. В зависимости от характеристик применяются генераторы различных типов .

Например, с помощью электростатических машин можно создать очень высокое напряжение, но при этом сила тока будет очень невелика. А с помощью гальванических элементов можно создать приемлемую силу тока, но они могут работать лишь непродолжительное время.

Структура генератора

Рассмотрим индукционный электромеханический генератор переменного тока. Генераторов такого типа много, но любой из них имеет общие основные детали.
  • Постоянный или электромагнит. С помощью него создается магнитное поле.
  • Обмотка. В ней индуцируется переменная ЭДС.

Амплитуда ЭДС наводится в каждом витке обмотки. Так как витки соединены последовательно значения ЭДС будут складываться. ЭДС в рамке будет пропорциональна числу витков в обмотке. Для получения большого значения магнитного потока в генераторах делают специальную систему из двух сердечников.

В пазах одного сердечника размещаются обмотки, которые создают магнитное поле, а в пазах другого, обмотки, в которых индуцируется ЭДС. Один из сердечников вращается, его называют ротором. Второй неподвижен и называется статором. Зазор между сердечниками стараются сделать как можно меньшим, чтобы увеличить поток вектора магнитной индукции.

На рисунке представлена модель простейшего генератора.


Принцип действия генератора

В генераторе, модель которого представлена на рисунке, магнитное поле создается постоянным магнитом , а проволочная рамка вращается внутри него. В принципе, можно оставить рамку неподвижной и вращать магнит. От этого ничего бы не изменилось .

В промышленных генераторах именно так и делается. Вращается электромагнит, а обмотки, в которых появляется ЭДС остаются неподвижными. Это связано с тем, что для того, чтобы подвести ток к ротору или снять с обмоток ротора, необходимо использовать скользящие контакты. Для этого используются щетки и контактные кольца. Сила тока, которая заставит вращаться ротор, много меньше, чем та, которую мы снимем с обмоток.

Поэтому удобнее подводить ток к ротору, а снимать ток со статора. В генераторах малой мощности, для создания магнитного поля используют вращающийся постоянный магнит, тогда подводить ток к ротору вообще необязательно. И использовать щетки и кольца не нужно.

При вращении ротора, в обмотках статора возникает ЭДС. Это происходит потому, что возникает вихревое электрическое поле . Современные генераторы это очень большие машины. Причем при таких размерах (несколько метров), некоторые важнейшие внутренние части изготавливаются с точность до миллиметра.

Трансформаторы

Генераторы, которые стоят на электростанциях, вырабатывают очень мощное ЭДС. На практике такое напряжения редко когда бывает нужно. Поэтому такое напряжение необходимо преобразовывать.

Для преобразования напряжения используются устройства, называются трансформаторами. Трансформаторы могут как и повысить напряжение, так и понизить его. Существуют также стабилизирующие трансформаторы, которые не повышают и не понижают напряжение.

Рассмотрим устройство трансформатора на следующем рисунке.

Условное обозначение трансформатора:



Устройство и работа трансформатора

Трансформатор состоит из двух катушек с проволочными обмотками. Эти катушки надевают на стальной сердечник. Сердечник не является монолитным, а собирается из тонких пластин.

Одна из обмоток называется первичной. К этой обмотке подсоединяют переменное напряжение, которое идет от генератора, и которое нужно преобразовать. Другая обмотка называется вторичной. К ней подсоединяют нагрузку. Нагрузка это все приборы и устройства, которые потребляют энергию.

На следующем рисунке представлено условное обозначение трансформатора.

картинка

Работа трансформатора основана на явлении электромагнитной индукции. Когда через первичную обмотку проходит переменный ток, в сердечнике возникает переменный магнитный поток. А так как сердечник общий, магнитный поток индуцирует ток и в другой катушке.

В первичной обмотке трансформатора имеется N 1 витков, её полная ЭДС индукции равняется e 1 = N 1 e, где е – мгновенное значение ЭДС индукции во всех витках. е одинаково для всех витков обоих катушек.

Во вторичной обмотке имеется N 2 витков. В ней индуцируется ЭДС e 2 = N 2 e.

Следовательно: e 1 /e 2 = N 1 / N 2 .

Сопротивлением обмоток пренебрегаем. Следовательно, значения ЭДС индукции и напряжения будут приблизительно равны по модулю: |u 1 |≈|e 1 |.

Глава 5. ПРОИЗВОДСТВО, ПЕРЕДАЧА И ИСПОЛЬЗОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света и т. д.

Переменный ток в отличие от постоянного имеет то преимущество, что напряжение и силу тока можно в очень широких пределах преобразовывать (трансформировать) почти без потерь энергии. Такие преобразования необходимы во многих электро- и радиотехнических устройствах. Но особенно необходима трансформация напряжения и тока при передаче электроэнергии на большие расстояния.

§ 37 ГЕНЕРИРОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Электрический ток вырабатывается в генераторах - устройствах, преобразующих энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи 1 , солнечные батареи и т. п. Исследуются возможности создания принципиально новых типов генераторов.

1 В термобатареях используется свойство двух контактов разнородных материалов создавать ЭДС за счет разности температур контактов.

Напримep, разрабатываются так называемые топливные элементы , в которых энергия, освобождающаяся в результате реакции водорода с кислородом, непосредственно прекращается в электрическую.

Область применения каждого из перечисленных типов генераторов электроэнергии определяется их характеристиками. Так, электростатические машины создают высокую разность потенциалов, но не способны создать в цепи сколько-нибудь значительную силу тока . Гальванические элементы могут дать большой ток, но продолжительность их действия невелика.

Основную роль в наше время выполняют электромеханические индукционные генераторы переменного тока. В этих генераторах механическая энергия превращается в электрическую. Их действие основано на явлении электромагнитной индукции. Такие генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении.

В дальнейшем, говоря о генераторах, мы будем иметь в виду именно индукционные электромеханические генераторы.

Генератор переменного тока. Принцип действия генератора переменного тока уже был рассмотрен в § 31.

В настоящее время имеется много различных типов индукционных генераторов. Но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС (в рассмотренной модели генератора это вращающаяся рамка). Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу ее витков. Она пропорциональна также амплитуде переменного магнитного потока (Ф m = BS) через каждый виток (см. § 31).

Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, изготовленных из электротехнической стали. Обмотки, создающие магнитное поле,


размещены в назах одного из сердечников, а обмотки, в которых индуцируется ЭДС, - в пазах другого. Один из сердечников (обычно внутренний) вместе с обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшсим для увеличения потока вектора магнитной индукции.

В изображенной на рисунке 5.1 модели генератора вращается проволочная рамка, которая является ротором (по без железного сердечника). Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно бьию бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной.

В больших промышленных генераторах вращается именно электромагнит, являющийся ротором, а обмотки, в которых наводится ЭДС, уложены в назах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки (рис. 5.2). Неподвижные пластины - щетки - прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным па том же валу.

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля , порожденного изменением магнитного потока при вращении ротора.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Энергия (греческое — действие, деятельность ) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую .

Согласно представлениям физической науки, энергия — это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная). Последние три вида относятся к внутренней форме энергии, т.е. обусловлены потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.

Если энергия — результат изменения состояния движения материальных точек или тел, то она называется кинетической ; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.

Если энергия — результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной ; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.

Энергию в естествознании в зависимости от природы делят на следующие виды.

Механическая энергия проявляется при взаимодействии, движении отдельных тел или частиц. К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах — транспортных и технологических.

Тепловая энергия — энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.

Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Электрическая энергия — энергия движущихся по электрической цепи электронов (электрического тока).

Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).

Химическая энергия — это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.

Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.

Магнитная энергия — энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.

Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой. Электромагнитнаяэнергия — это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.

Таким образом, электромагнитная энергия — это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия — энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).

Бытует и старое название данного вида энергии — атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.

Гравитационная энергия — энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли — энергия силы тяжести.

Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира гравитационную; энергию взаимодействия тел механическую; энергию молекулярных взаимодействий тепловую; энергию атомных взаимодействий химическую; энергию излучения электромагнитную; энергию, заключенную в ядрах атомов ядерную.

Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.

В Международной системе единиц СИ в качестве единицы измерения энергии принят 1 Джоуль (Дж). 1 Дж эквивалентен 1 ньютон метр (Нм). Если расчеты связаны с теплотой, биологической и многими другими видами энергии, то в качестве единицы энергии применяется внесистемная единица — калория (кал) или килокалория (ккал), 1кал = 4,18 Дж. Для измерения электрической энергии пользуются такой единицей, как Ватт·час (Вт·ч, кВт·ч, МВт·ч), 1 Вт·ч = 3,6 МДж. Для измерения механической энергии используют величину 1 кг·м = 9,8 Дж.

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называется первичной . В соответствии с классификацией энергоресурсов по признаку исчерпаемости можно классифицировать и первичную энергию.

При классификации первичной энергии выделяют традиционные и нетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.

К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.).

Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках — станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).

Преобразование первичной энергии во вторичную, в частности в электрическую, осуществляется на станциях, которые в своем названии содержат указание на то, какой вид первичной энергии в какой вид вторичной преобразуется на них:

ТЭС тепловая электрическая станция преобразует тепловую энергию в электрическую;

ГЭС гидроэлектростанция преобразует механическую энергию движения воды в электрическую;

ГАЭС гидроаккумулирующая электростанция преобразует механическую энергию движения предварительно накопленной в искусственном водоеме воды в электрическую;

АЭС атомная электростанция преобразует атомную энергию ядерного топлива в электрическую;

ПЭС приливная электростанция преобразует энергию океанических приливов и отливов в электрическую;

ВЭС ветряная электростанция преобразует энергию ветра в электрическую;

СЭС солнечная электростанция преобразует энергию солнечного света в электрическую, и т.д.

Электричество — очень удобный для применения и экономичный вид энергии и по праву может считаться основой современной цивилизации.

Немногим более половины всей потребляемой энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть — в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет.

Электрическая энергия обладает такими свойствами, которые делают ее незаменимой в механизации и автоматизации производства и в повседневной жизни человека. Ее очень просто превратить в тепло. Это делается, например, в электрических источниках света (лампочках накаливания), в технологических печах, используемых в металлургии, в различных нагревательных и отопительных устройствах. Превращение электрической энергии в механическую используется в приводах электрических моторов.

При любых обсуждениях вопросов, связанных с использованием энергии, необходимо отличать энергию упорядоченного движения, известную в технике под названием свободной энергии (механическая, химическая, электрическая, электромагнитная, ядерная) и энергию хаотического движения, т.е. теплоту.

Любая из форм свободной энергии может быть практически полностью использована. В то же время хаотическая энергия тепла при превращении в механическую энергию снова теряется в виде тепла. Мы не в силах полностью упорядочить случайное движение молекул, превратив его энергию в свободную. Более того, в настоящее время практически нет способа непосредственного превращения химической и ядерной энергии в электрическую и механическую, как наиболее используемые. Приходится внутреннюю энергию веществ превращать в тепловую, а затем в механическую или электрическую с большими неизбежными теплопотерями.

Таким образом, все виды энергии после выполнения ими полезной работы превращаются в теплоту с более низкой температурой, которая практически непригодна для дальнейшего использования.

Развитие естествознания на протяжении жизни человечества неопровержимо доказало, какие бы новые виды энергии ни открывались, вскоре обнаруживалось одно великое правило. Сумма всех видов энергии оставалась постоянной, что, в конечном счете, привело к утверждению: энергия никогда не создается из ничего и не уничтожается бесследно, она только переходит из одного вида в другой.

В современной науке и практике эта схема настолько полезна, что способна предсказывать появление новых видов энергии.

Если будет обнаружено изменение энергии, которая не входит в список известных в настоящее время видов энергии, если выяснится, что энергия исчезает или появляется из ничего, то будет сначала «придуман», а затем найден новый вид энергии, который учтет это отклонение от постоянства энергии, т.е. закона сохранения энергии.

Закон сохранения энергии нашел подтверждение в различных областях — от механики Ньютона до ядерной физики. Причем закон сохранения энергии — это не только плод воображения или обобщения экспериментов. Вот почему можно полностью согласиться с утверждением одного из крупнейших физиков-теоретиков Пуанкаре: «Так как мы не в силах дать общего определения энергии, принцип ее сохранения означает, что существует нечто , остающееся постоянным. Поэтому, к каким бы новым представлениям о мире не привели нас будущие эксперименты, мы заранее знаем: в них будет нечто остающееся постоянным, что можно назвать ЭНЕРГИЕЙ».

Демонстрационные опыты - см. т. II, §§ 2 и 50.
Упрощенные приборы - см. т. III, § 49.
Рисунки и чертежи на уроках - см. т. IV, § 68.

1. Содержание: а) Явление электромагнитной индукции. Связь между направлениями поля, движения проводника и тока. Правило правой руки. б) Получение переменного тока при вращении рамки в магнитном поле. Различие между переменным и постоянным токами, в) Коллектор, как прибор для выпрямления переменного тока. г) Понятие об устройстве динамомашины. Обратимость динамомашины. д) Значение открытия электромагнитной индукции и изобретения динамомашины.

2. Методические замечания . для связи с предыдущим отделом в начале изучения темы следует поставить вопрос, примерно, в том виде, в каком он возник у М. Фарадея . Если проводник с током в магнитном поле приходит в движение, то, в свою очередь, не может ли движение проводника в поле повести к возникновению тока? Другими словами, ставится вопрос о возможности превращения механической энергии в электрическую.

Методические затруднения при изучении, явления электромагнитной индукции и принципа устройства и действия динамомашины вызываются теми же причинами, которые были указаны в § 101, 2. Однако, их легче преодолеть, поскольку подобные вопросы уже рассматривались в предыдущем при изучении электромотора. В целях упрощения изложения и обеспечения доступности материала для учащихся приходится прибегать, кроме демонстрации опытов, к широкому использованию учебных пособий в виде рамок или контуров с кольцами и коллектором (см. т. II, § 50, 7, рис. 377, 389 и 390), а также к применению объяснительных картин. При рисовании на доске необходимо отказаться от чертежей в косоугольной проекции и давать условные изображения в виде разрезов, подобных показанному на рисунке 242. Поскольку учащиеся не имеют представления об электродвижущей силе, постольку, в целях упрощения изложения при рассмотрении явления электромагнитной индукции и последующих вопросов, приходится говорить об индуцированном в проводниках электрическом токе, а не об индуцированной электродвижущей силе, что является с научной точки зрения не совсем правильным.

Затруднения при изучении явления индукции возникают также по той причине, что демонстрационный гальванометр, применяемый в школе, оказывается недостаточно чувствительным. Поэтому явление приходится показывать в сильно осложнённом виде, возбуждая ток в катушке, а не в прямом проводнике.

Далеко не простым делом является создание у учащихся сколько-нибудь правильного представления о переменном электрическом токе не только как о токе, периодически изменяющем своё направление, но и о непрерывном изменении его величин в течение каждого полупериода. Желательно, чтобы учащиеся получили представление о графике переменного тока и могли дать соответствующие объяснения. Это оказывается возможным только в том случае, когда на построение всевозможных графиков преподаватель в течение всего курса обращал достаточное внимание.

3. Электромагнитная индукция. Изложение этого вопроса не только в школе, но и в учебниках является неудовлетворительным. Вследствие методического несовершенства аппаратуры на опытах удаётся обнаружить только возникновение индукционного тока, но не обосновать существующую связь между направлениями поля, механического движения и направлением тока. Подробное изложение методики эксперимента, ведущей к упрощению изложения вопроса и позволяющей ввести правило правой руки, а также описание соответствующих приборов даны в т. II, § 50, 2 и 5. Здесь же по отношению к эксперименту ограничимся следующими указаниями:

1) Индукционная катушка, имеющаяся обычно в школе, должна быть признана негодной с методической точки зрения. Следует применять специально изготовленную катушку, на которой ясно видны учащимся направление обмотки и у которой провода окрашены в различные цвета (см. т. II, рис. 40).

2) Внутри демонстрационного гальванометра надо, в случае надобности, сделать пересоединение проводов, ведущих к его клеммам, чтобы отклонение стрелки происходило по току (см. т. II, § 45, рис. 323).

3) При демонстрации пользоваться не прямым, а U-образным магнитом, так как картина поля у последнего проще, чем у первого (см. т. II, рис. 399 и 401).

4) Следует перемещать катушку, надвигая её на магнит, но не наоборот. В противном случае возникнут затруднения при введении правила правой руки .

Только при соблюдении указанных условий может быть сравнительно просто установлена на опыте связь, выражаемая правилом правой руки.

Явление индукции изучается в следующем виде:

1) Индукционный ток возникает при движении проводника поперёк силовых линий поля, но отнюдь не вдоль их (рис. 244).

2) Явление индукции наблюдается не только при движении перемещении катушки около полюсов проводника по отношению к полю, но и поля по отношению к проводнику, т. е. при относительном движении поля и проводника.

3) Четыре возможных случая движения проводника около магнитных полюсов сводятся к двум основным случаям относительного перемещения проводника поперёк силовых линий поля (рис. 245).

4) Направление индукционного тока в зависимости от направлений поля и перемещения определяется правилом правой руки.

Желательно рассмотреть правило Ленца, что рациональнее выполнить позднее - при постановке опыта, обнаруживающего сопротивление якоря динамомашины при её нагрузке.

Получение индукций электромагнитом можно не демонстрировать, так как это не вносит чего-либо принципиально нового. Демонстрация возникновения тока во вторичной катушке при перерывах тока в первичной служит введением к рассмотрению вопроса о трансформаторе и поэтому должна быть проведена в начале следующей темы.

При изучении правила правой руки следует, руководствуясь положениями, приведёнными в § 101, 3, провести тренировочные занятия со всем классом.

Зарисовки преподавателя на доске и учащихся в тетрадях должны соответствовать всем возможным случаям движения катушки относительно полюсов (рис. 244 и 245).

Вопрос об этих рисунках подробно рассмотрен в т. IV, § 68, 1 (рис. 303-308).

4. Получение переменного тока вращением рамки . Для основного опыта, служащего для обнаружения возникновения переменного тока при поворотах рамки в магнитном поле, служит катушка, описанная в т. II, § 50, 6 (рис. 393). Суждение об изменении направления тока при прохождении рамки через нейтральное положение производится на основании отклонения стрелки демонстрационного гальванометра. Объяснение наблюдаемому явлению даётся на основании правила правой руки при помощи демонстрационного контура с кольцами (рис. 246 и см. т. II, рис. 389) и заранее изготовленных картинок, подобных рисунку 242. У этого контура, как и при изучении движения проводника, для упрощения объяснений необходима окраска его отдельных частей в различные цвета.

Учащихся следует ознакомить с основными отличиями переменного тока от постоянного:

1) Переменный ток через одинаковые промежутки времени меняет своё. направление на обратное.

2) Сила переменного тока в течение такого промежутка времени непрерывно возрастает до некоторой наибольшей величины и затем так же уменьшается до нуля.

3) Время, в течение которого переменный ток течёт как в том, так и обратном направлении, называется периодом переменного тока. Желательно дать график переменного тока (см. т. IV, рис. 306).

В заключение надо рассмотреть устройство магнитоэлектрической машины с кольцами и показать её действие, накаливая электрическую лампочку (см. т. II, § 50, 8 и рис. 394). При этом даются объяснения, с какой целью тело якоря делается из железа, а обмотка - из значительного числа витков.

Упомянув о замене магнитов электромагнитами, такую машину можно рассматривать как прообраз современных машин переменного тока (альтернаторов), употребляемых в технике. Название машин переменного тока динамомашинами неправильно .

5. Выпрямляющее действие коллектора. Динамомашина . Выпрямляющее действие коллектора выясняют, пользуясь контуром с коллектором и прибегая к заранее изготовленным рисункам вроде изображённых на рисунке 247 . Затем демонстрируют действие магнито-электрической машины с коллектором (см. т. II, рис. 394), накаливая лампочку и показывая при помощи демонстрационного гальванометра, что машина даёт прямой ток. Полезно рассказать также об устройстве карманного фонарика с магнито-электрической машиной (см. т. II, рис. 395, II). Указав, что в технических машинах вместо магнитов применяют для усиления действия электромагниты, учащихся знакомят с динамоэлектрическим принципом, состоящим в том, что ток для питания индуктора берётся от якоря динамомашины, что составляет её характерное свойство.

Учащиеся легко усматривают тождество в устройствах динамомашины и мотора постоянного тока. Поэтому вопрос об обратимости динамомашины, что показывается на опыте, не представляет затруднений.

6. Динамомашина как преобразователь механической энергии в электрическую . Важнейшее принципиальное значение имеет опыт, показывающий, что потребляемая динамомашиной механическая мощность зависит от электрической, даваемой динамомашиной. Такое явление обнаруживается по изменению скорости падающего груза, который приводит в действие динамомашину (см. т. II, § 50, 3) при её электрической нагрузке, по сравнению с работой вхолостую. В связи с этим опытом и явлением обратимости динамомашины, как было указано в разделе 3, должно быть выяснено правило Ленца. На основании сопоставления правил правой и левой руки и рисунков вполне возможно подвести учащихся к выводу, что индуктивный ток всегда имеет такое направление, что создаёт силу, противодействующую производимому движению. Далее вводится понятие о к.п.д. динамомашины и указывается его высокая величина для наиболее совершенных машин. Введение к.п.д. производят, отправляясь от закона сохранения энергии и тем самым подчёркивая всеобщность последнего.

В заключение рассматривается значение изобретения механического генератора электрической энергии, которое сделало возможным получение сильных токов и позволило ввести широкое использование электрической энергии в технике и быту.

7. Исторические сведения . Рассмотрение значения изобретения механического генератора электрической энергии должно сопровождаться сообщением соответствующих исторических сведений. К числу их принадлежат: 1) история открытия электромагнитной индукции М. Фарадеем; 2) биография М. Фарадея (§§ 9 и 10); 3) краткие сведения об изобретении динамомашины и 4) история открытия обратимости динамомашины. Изучение биографии М. Фарадея имеет весьма большое воспитательное значение.

Кроме рассказа о Фарадее, учащихся надо ознакомить с жизнью и важнейшими открытиями русского учёного Эмилия Христиановича Ленца, посвятившего всю свою жизнь в основном изучению мгнито-электрических явлений. Наиболее важным следует считать открытие им закона, устанавливающего направление индуцированного тока (правило Ленца) и тем самым связывающего в одно целое явления движения проводника в магнитном поле и явления электромагнитной индукции (см. раздел 6). Это открытие имело огромное принципиальное значение и, дополненное ещё рядом других работ Ленца по электромагнетизму, являясь первой определяющей для мировой науки работой по теории электромагнитных машин. Поэтому осведомление учащихся об академикё Ленце только как об учёном, открывшем закон Джоуля-Ленца, является недостаточным.

8. Задачи. Задачи применяются с той же целью и такого же типа, как и в теме «движение проводника». Особые интерес и пользу представляют задачи-вопросы о переменном токе, предлагающие предсказать, как будут происходить: тепловые действия, электролиз сернокислой меди и подкислённой воды и притяжение электромагнитом железа (см. т. II, § 51, 2 и рис. 406).

9. Учебные пособия . Кроме казанных выше контуров с кольцами и коллектором, следует применить объяснительную картину: «Устройство генератора постоянного тока. Полезна демонстрация диапозитивов с изображением употребляющихся в технике машин (генераторов) постоянного и переменного токов. Ещё лучше показать соответствующие фрагменты из кинофильма: «Превращение механической энергии в электрическую».

Исключительно сильное впечатление на учащихся производит демонстрация действующей модели паросиловой электростанции.

10. Внеклассные занятия . Как было указано в § 49, 3, желательна организация вечера, посвящённого М. Фарадею, или выпуск соответствующей стенгазеты. Для кружковых занятий тема открывает широкиё возможности для изучения переменного тока на ряде опытов (см. т. II, § 51, 2 и т III, § 2,7).